5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconsidering lactate as a sepsis risk biomarker

      research-article
      1 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          There has been renewed interest in lactate as a risk biomarker in sepsis and septic shock. However, the ability of the odds ratio (OR) and change in the area under the receiver operator characteristic curve (AUC-ROC) to assess biomarker added-value has been questioned.

          Design, setting and participants

          A sepsis cohort was identified from the ICU database of an Australian tertiary referral hospital using APACHE III diagnostic codes. Demographic information, APACHE III scores, 24-hour post-admission patient lactate levels, and hospital mortality were accessed.

          Measurements and main results

          Hospital mortality was modelled using a base predictive logistic regression model and sequential addition of admission lactate, lactate clearance ([lactate admission—lactate final]/lactate admission), and area under the lactate-time curve (LTC). Added-value was assessed using lactate index OR; AUC-ROC difference (base-model versus lactate index addition); net (mortality) reclassification index (NRI; range -2 to +2); and net benefit (NB), the number of true positives per patient adjusted for the number of false positives. The data set comprised 717 patients with mean(SD) age and APACHE III score 61.1(16.5) years and 68.3(28.2) respectively; 59.2% were male. Admission lactate was 2.3(2.5) mmol/l; with lactate of ≥ 4 mmol/L (37% hospital mortality) in 17% and patients with lactate < 4 mmol/L having 18% hospital mortality. The admission base-model had an AUC-ROC = 0.81 with admission lactate OR = 1.127 (95%CI: 1.038, 1.224), AUC-ROC difference of 0.0032 (-0.0037, 0.01615; P = 0.61), and NRI 0.240(0.030, 0.464). The over-time model had an AUC-ROC = 0.86 with (i) clearance OR = 0.771, 95%CI: 0.578, 1.030; P = 0.08; AUC-ROC difference 0.001 (-0.003, 0.014; P = 0.78), and NRI 0.109(-0.193, 0.425) and (ii) LTC OR = 0.997, 95%CI: 0.989, 1.005, P = 0.49; AUC-ROC difference 0.004 (-0.002, 0.004; P = 0.34), and NRI 0.111(-0.222, 0.403). NB was not incremented by any lactate index.

          Conclusions

          Lactate added-value assessment is dependent upon the performance of the underlying predictive model and should incorporate risk reclassification and net benefit measures.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Book: not found

          Applied Logistic Regression

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults.

            The objective of this study was to refine the APACHE (Acute Physiology, Age, Chronic Health Evaluation) methodology in order to more accurately predict hospital mortality risk for critically ill hospitalized adults. We prospectively collected data on 17,440 unselected adult medical/surgical intensive care unit (ICU) admissions at 40 US hospitals (14 volunteer tertiary-care institutions and 26 hospitals randomly chosen to represent intensive care services nationwide). We analyzed the relationship between the patient's likelihood of surviving to hospital discharge and the following predictive variables: major medical and surgical disease categories, acute physiologic abnormalities, age, preexisting functional limitations, major comorbidities, and treatment location immediately prior to ICU admission. The APACHE III prognostic system consists of two options: (1) an APACHE III score, which can provide initial risk stratification for severely ill hospitalized patients within independently defined patient groups; and (2) an APACHE III predictive equation, which uses APACHE III score and reference data on major disease categories and treatment location immediately prior to ICU admission to provide risk estimates for hospital mortality for individual ICU patients. A five-point increase in APACHE III score (range, 0 to 299) is independently associated with a statistically significant increase in the relative risk of hospital death (odds ratio, 1.10 to 1.78) within each of 78 major medical and surgical disease categories. The overall predictive accuracy of the first-day APACHE III equation was such that, within 24 h of ICU admission, 95 percent of ICU admissions could be given a risk estimate for hospital death that was within 3 percent of that actually observed (r2 = 0.41; receiver operating characteristic = 0.90). Recording changes in the APACHE III score on each subsequent day of ICU therapy provided daily updates in these risk estimates. When applied across the individual ICUs, the first-day APACHE III equation accounted for the majority of variation in observed death rates (r2 = 0.90, p less than 0.0001).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker.

              M. S. Pepe (2004)
              A marker strongly associated with outcome (or disease) is often assumed to be effective for classifying persons according to their current or future outcome. However, for this assumption to be true, the associated odds ratio must be of a magnitude rarely seen in epidemiologic studies. In this paper, an illustration of the relation between odds ratios and receiver operating characteristic curves shows, for example, that a marker with an odds ratio of as high as 3 is in fact a very poor classification tool. If a marker identifies 10% of controls as positive (false positives) and has an odds ratio of 3, then it will correctly identify only 25% of cases as positive (true positives). The authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe a marker's ability to classify subjects. Appropriate statistical methods for assessing and reporting the classification power of a marker are described. In addition, the serious pitfalls of using more traditional methods based on parameters in logistic regression models are illustrated.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                3 October 2017
                2017
                : 12
                : 10
                : e0185320
                Affiliations
                [1 ] Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
                [2 ] Department of Critical Care Medicine, St Vincent’s Hospital Melbourne, Fitzroy, Victoria, Australia
                Institut d'Investigacions Biomediques de Barcelona, SPAIN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-2311-0440
                Article
                PONE-D-17-11413
                10.1371/journal.pone.0185320
                5626033
                28972976
                2b31efd9-a348-4adf-bd3d-9e5f02f73e0b
                © 2017 Moran, Santamaria

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 March 2017
                : 11 September 2017
                Page count
                Figures: 6, Tables: 5, Pages: 20
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Sepsis
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Sepsis
                Biology and Life Sciences
                Biochemistry
                Biomarkers
                Research and Analysis Methods
                Mathematical and Statistical Techniques
                Statistical Methods
                Forecasting
                Physical Sciences
                Mathematics
                Statistics (Mathematics)
                Statistical Methods
                Forecasting
                Physical Sciences
                Mathematics
                Algebra
                Polynomials
                Medicine and Health Sciences
                Health Care
                Health Care Facilities
                Hospitals
                Medicine and Health Sciences
                Health Care
                Health Care Facilities
                Hospitals
                Intensive Care Units
                Medicine and Health Sciences
                Gastroenterology and Hepatology
                Liver Diseases
                Cirrhosis
                Medicine and Health Sciences
                Diagnostic Medicine
                Custom metadata
                Data cannot be made publicly available to protect patient privacy, as required by the Research Governance Unit at St. Vincent’s Hospital (Melbourne) and the St. Vincent’s Hospital Melbourne Research Ethics Committee. Data requests may be sent to Dr. Antony Tobin, Head of Medicine at St. Vincent’s Hospital (Melbourne), at antony.tobin@ 123456svha.org.au .

                Uncategorized
                Uncategorized

                Comments

                Comment on this article