7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Manipulating thermal stress on rocky shores to predict patterns of recruitment of marine invertebrates under a changing climate

      ,
      Marine Ecology Progress Series
      Inter-Research Science Center

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          The impacts of climate change in coastal marine systems.

          Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            RECRUITMENT AND THE LOCAL DYNAMICS OF OPEN MARINE POPULATIONS

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change, keystone predation, and biodiversity loss.

              Climate change can affect organisms both directly via physiological stress and indirectly via changing relationships among species. However, we do not fully understand how changing interspecific relationships contribute to community- and ecosystem-level responses to environmental forcing. I used experiments and spatial and temporal comparisons to demonstrate that warming substantially reduces predator-free space on rocky shores. The vertical extent of mussel beds decreased by 51% in 52 years, and reproductive populations of mussels disappeared at several sites. Prey species were able to occupy a hot, extralimital site if predation pressure was experimentally reduced, and local species richness more than doubled as a result. These results suggest that anthropogenic climate change can alter interspecific interactions and produce unexpected changes in species distributions, community structure, and diversity.
                Bookmark

                Author and article information

                Journal
                Marine Ecology Progress Series
                Mar. Ecol. Prog. Ser.
                Inter-Research Science Center
                0171-8630
                1616-1599
                October 25 2012
                October 25 2012
                : 467
                : 121-136
                Article
                10.3354/meps09996
                2b34e2e6-7580-412f-b374-7e1f72a80115
                © 2012
                History

                Comments

                Comment on this article