17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin.

      European Journal of Pharmaceutics and Biopharmaceutics
      Anti-Inflammatory Agents, Non-Steroidal, chemistry, Chemistry, Pharmaceutical, Crystallography, X-Ray, Ibuprofen, Kaolin, Microscopy, Electron, Scanning, Spectroscopy, Fourier Transform Infrared

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ibuprofen was milled in the solid state with kaolin (hydrated aluminium silicate) in different ratio to examine the extent of transformation from crystalline to amorphous state. The physical stability of the resultant drug was also investigated. X-ray powder diffractometry (XRD) and birefringence by Scanning Electron Microscopy (SEM) studies indicated almost complete amorphization of the drug on ball milling with kaolin at 1:2 ratio. Fourier transform infrared spectroscopy (FTIR) data showed a reduction in the absorbance of the free and the hydrogen-bonded acid carbonyl peak of carboxylic acid group accompanied by a corresponding increase in the absorbance of the carboxylate peak, indicating an acid-base reaction between the carboxylic acid containing ibuprofen and kaolin on milling. The extent of amorphization and reduction in the carbonyl peak and increase in carboxylate peak was a function of kaolin concentration in the milled powder. On storage of milled powder (at 40 degrees C and 75% RH for 10 weeks), XRD and birefringence of SEM study showed the absence of reversion to the crystalline state and FTIR data revealed continued reduction of carbonyl peak, whereas, ibuprofen converted from its crystalline acid form to amorphous salt form on milling with kaolin. Kaolin-bound state of ibuprofen was physically stable during storage. In-vitro dissolution studies revealed that percent release of ibuprofen from the kaolin co-milled powder is in the order: 1:2>1:1>1:0.5>1:0.1>milled alone ibuprofen>crystalline ibuprofen.

          Related collections

          Author and article information

          Comments

          Comment on this article