96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recruitment of a SAP18-HDAC1 Complex into HIV-1 Virions and Its Requirement for Viral Replication

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HIV-1 integrase (IN) is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral) virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD), a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1) virions in an HIV-1 IN–dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV) virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1 H141A) was utilized. Incorporation of HDAC1 H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1 H141A decreased the infectivity of HIV-1 (but not SIV) virions. The block in infectivity due to virion-associated HDAC1 H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post-entry events, indicating a novel role for HDAC1 during HIV-1 replication.

          Author Summary

          The interaction between the host and HIV-1 virus is a dynamic process. While some host cellular proteins mount antiviral response, HIV-1 utilizes other host proteins for its propagation. It is crucial to understand the role of host proteins in HIV-1 replication for successful development of strategies to combat AIDS. INI1/hSNF5 is a cellular protein that directly binds to an HIV-1 protein, integrase (IN). It is selectively encapsidated into HIV-1 virions and is required for the subsequent viral replication. However, how INI1 mediates its effects is not completely understood. Here we report a novel finding that INI1 as well as IN directly binds to SAP18 (Sin3a-associated protein of 18 kD), a component of the cellular Sin3a/HDAC (Histone Deacetylase) complex. The HDAC complexes are multiprotein epigenetic modifiers known to affect cellular transcription. In this report we find that along with INI1, SAP18 and the components of the Sin3a-HDAC1 complex are specifically recruited into HIV-1 virions. In addition, we find that virion-associated deacetylase activity is required for efficient reverse transcription in target cells. These studies indicate that HIV-1 IN protein may recruit HDAC1 complex into the virions for utilizing them in the subsequent stages of replication. Our findings provide new insight into the roles of cellular HDAC1 complex in HIV-1 replication and provide a novel paradigm to understand host-virus dynamic interaction.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Purification and biochemical heterogeneity of the mammalian SWI-SNF complex.

          We have purified distinct complexes of nine to 12 proteins [referred to as BRG1-associated factors (BAFs)] from several mammalian cell lines using an antibody to the SWI2-SNF2 homolog BRG1. Microsequencing revealed that the 47 kDa BAF is identical to INI1. Previously INI1 has been shown to interact with and activate human immunodeficiency virus integrase and to be homologous to the yeast SNF5 gene. A group of BAF47-associated proteins were affinity purified with antibodies against INI1/BAF47 and were found to be identical to those co-purified with BRG1, strongly indicating that this group of proteins associates tightly and is likely to be the mammalian equivalent of the yeast SWI-SNF complex. Complexes containing BRG1 can disrupt nucleosomes and facilitate the binding of GAL4-VP16 to a nucleosomal template similar to the yeast SWI-SNF complex. Purification of the complex from several cell lines demonstrates that it is heterogeneous with respect to subunit composition. The two SWI-SNF2 homologs, BRG1 and hbrm, were found in separate complexes. Certain cell lines completely lack BRG1 and hbrm, indicating that they are not essential for cell viability and that the mammalian SWI-SNF complex may be tailored to the needs of a differentiated cell type.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits.

            Protein complexes of the SWI/SNF family remodel nucleosome structure in an ATP-dependent manner. Each complex contains between 8 and 15 subunits, several of which are highly conserved between yeast, Drosophila, and humans. We have reconstituted an ATP-dependent chromatin remodeling complex using a subset of conserved subunits. Unexpectedly, both BRG1 and hBRM, the ATPase subunits of human SWI/SNF complexes, are capable of remodeling mono-nucleosomes and nucleosomal arrays as purified proteins. The addition of INI1, BAF155, and BAF170 to BRG1 increases remodeling activity to a level comparable to that of the whole hSWI/SNF complex. These data define the functional core of the hSWI/SNF complex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5.

              Upon entry into a host cell, retroviruses direct the reverse transcription of the viral RNA genome and the establishment of an integrated proviral DNA. The retroviral integrase protein (IN) is responsible for the insertion of the viral DNA into host chromosomal targets. The two-hybrid system was used to identify a human gene product that binds tightly to the human immunodeficiency virus-type 1 (HIV-1) integrase in vitro and stimulates its DNA-joining activity. The sequence of the gene suggests that the protein is a human homolog of yeast SNF5, a transcriptional activator required for high-level expression of many genes. The gene, termed INI1 (for integrase interactor 1), may encode a nuclear factor that promotes integration and targets incoming viral DNA to active genes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2009
                June 2009
                5 June 2009
                : 5
                : 6
                : e1000463
                Affiliations
                [1 ]Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
                [2 ]Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
                [3 ]Basic Research Program, SAIC–Frederick Inc., National Cancer Institute–Frederick, Frederick, Maryland, United States of America
                Northwestern University, United States of America
                Author notes
                [¤a]

                Current address: Department of Urology, Albert Einstein College of Medicine, Bronx, New York, United States of America

                [¤b]

                Current address: HIV Research Centre, Tsinghua University, Beijing, People's Republic of China

                [¤c]

                Current address: Genome Sciences Centre, BC Cancer Research Centre, Vancouver, British Columbia, Canada

                Conceived and designed the experiments: MS GVK. Performed the experiments: MS JC SRD SM XW KPD XS GSWC. Analyzed the data: MS JC SM KPD GVK. Contributed reagents/materials/analysis tools: DEO GVK. Wrote the paper: MS JC GVK.

                Article
                08-PLPA-RA-0390R4
                10.1371/journal.ppat.1000463
                2685004
                19503603
                2b3a58b6-d0d2-4709-b214-a810a9d69dc5
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 22 April 2008
                : 4 May 2009
                Page count
                Pages: 15
                Categories
                Research Article
                Infectious Diseases/HIV Infection and AIDS
                Infectious Diseases/Viral Infections
                Molecular Biology/Histone Modification
                Virology/Immunodeficiency Viruses
                Virology/Viral Replication and Gene Regulation

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article