2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals

      , , , , , , , ,
      Chemosphere
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sewage sludge (SS) is a frequent and challenging issue for countries with big populations, due to its massive output, significant hazard potential, and challenging resource utilization. Pyrolysis can simultaneously realize the reduction, harmlessness and recycling of SS. Co-pyrolysis offers a wide range of potential in terms of increasing product quality and immobilizing heavy metals (HMs), thanks to its capacity to use additives to address the mismatch between SS characteristics and pyrolysis. High-value utilization potential of SS biochar is the key to evaluating the advancement of treatment technology. A further requirement for using biochar resources is the immobilization and bioavailability reduction of HMs. Due to the catalytic and synergistic effects in the co-pyrolysis process, co-pyrolysis SS biochar exhibits enhanced functionality and has been applied in soil improvement, pollutant adsorption and catalytic reactions. This review focuses on the research progress of different additives in improving the functionality of biochar and influencing the behavior of HMs. The key limitation and challenges in SS co-pyrolysis are then discussed. Future research prospects are detailed from seven perspectives, including pyrolysis process optimization, co-pyrolysis additive selection, catalytic mechanism research of process and product, biochar performance improvement and application field expansion, cooperative immobilization of HMs, and life cycle assessment. This review will offer recommendations and direction for future research paths, while also assist pertinent researchers in swiftly understanding the current state of SS pyrolysis research field.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Polymeric photocatalysts based on graphitic carbon nitride.

          Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Metal-Free Carbocatalysis in Advanced Oxidation Reactions

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4Coupled with CdS Quantum Dots

                Bookmark

                Author and article information

                Contributors
                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                March 2023
                March 2023
                : 317
                : 137929
                Article
                10.1016/j.chemosphere.2023.137929
                36682641
                2b3ba511-2de6-4629-8178-aef42ba9c05d
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article