7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Botox-A SNAP-25 protein expression and the mechanism of inhibitory neurotransmitter imbalance in chronic sciatic nerve pain rat model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Botox-A impact on the expression of SNAP-25 protein in rat chronic sciatic nerve pain model was assessed and the mechanism of inhibitory neurotransmitter imbalance was studied. A chronic constriction injury (CCI) model consisted of 30 healthy male rats. The rats were randomly divided into the sham-operated group, CCI group and BoNT/A intervention group, and during 1, 7 and 14 days we conducted mechanical withdrawal threshold (MWT) test and thermal withdrawal latency (TWL) test before and after operation. After 14 days, the animals were sacrificed. SNAP-25 protein expression level, mRNA subunit NR2B within excitatory neurotransmitter glutamate GLT and protein expression level, as well as GAT mRNA, the inhibitory GABA neurotransmitter transporter and protein expression level were studied by RT-polymerase chain reaction and western blot analysis. The difference between MWT and TWL at each point in time before and after operation showed no statistical significance (P>0.05) in the sham-operated group. For the CCI group at each time point, MWT and TWL were obviously lower than the sham-operated group and the difference was statistically significant (P<0.05) while the internal difference at each time point showed no statistical significance (P>0.05). The expression level of protein of SNAP-25 and NR2B mRNA in the CCI group was clearly higher than sham-operated group. Additionally, the expression level of GAT-1 mRNA and protein in CCI group was apparently lower than the sham-operated group. In conclusion, Botox-A helped reduce SNAP-25 within rat chronic sciatic nerve pain model thereby relieving pain.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Analgesic Effect on Neuropathic Pain of Retrogradely Transported botulinum Neurotoxin A Involves Schwann Cells and Astrocytes

          In recent years a growing debate is about whether botulinum neurotoxins are retrogradely transported from the site of injection. Immunodetection of cleaved SNAP-25 (cl-SNAP-25), the protein of the SNARE complex targeted by botulinum neurotoxin serotype A (BoNT/A), could represent an excellent approach to investigate the mechanism of action on the nociceptive pathways at peripheral and/or central level. After peripheral administration of BoNT/A, we analyzed the expression of cl-SNAP-25, from the hindpaw’s nerve endings to the spinal cord, together with the behavioral effects on neuropathic pain. We used the chronic constriction injury of the sciatic nerve in CD1 mice as animal model of neuropathic pain. We evaluated immunostaining of cl-SNAP-25 in the peripheral nerve endings, along the sciatic nerve, in dorsal root ganglia and in spinal dorsal horns after intraplantar injection of saline or BoNT/A, alone or colocalized with either glial fibrillar acidic protein, GFAP, or complement receptor 3/cluster of differentiation 11b, CD11b, or neuronal nuclei, NeuN, depending on the area investigated. Immunofluorescence analysis shows the presence of the cl-SNAP-25 in all tissues examined, from the peripheral endings to the spinal cord, suggesting a retrograde transport of BoNT/A. Moreover, we performed in vitro experiments to ascertain if BoNT/A was able to interact with the proliferative state of Schwann cells (SC). We found that BoNT/A modulates the proliferation of SC and inhibits the acetylcholine release from SC, evidencing a new biological effect of the toxin and further supporting the retrograde transport of the toxin along the nerve and its ability to influence regenerative processes. The present results strongly sustain a combinatorial action at peripheral and central neural levels and encourage the use of BoNT/A for the pathological pain conditions difficult to treat in clinical practice and dramatically impairing patients’ quality of life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Botulinum Toxin for Neuropathic Pain: A Review of the Literature

            Botulinum neurotoxin (BoNT), derived from Clostridium botulinum, has been used therapeutically for focal dystonia, spasticity, and chronic migraine. Its spectrum as a potential treatment for neuropathic pain has grown. Recent opinions on the mechanism behind the antinociceptive effects of BoNT suggest that it inhibits the release of peripheral neurotransmitters and inflammatory mediators from sensory nerves. There is some evidence showing the axonal transport of BoNT, but it remains controversial. The aim of this review is to summarize the experimental and clinical evidence of the antinociceptive effects, mechanisms, and therapeutic applications of BoNT for neuropathic pain conditions, including postherpetic neuralgia, complex regional pain syndrome, and trigeminal neuralgia. The PubMed and OvidSP databases were searched from 1966 to May 2015. We assessed levels of evidence according to the American Academy of Neurology guidelines. Recent studies have suggested that BoNT injection is an effective treatment for postherpetic neuralgia and is likely efficient for trigeminal neuralgia and post-traumatic neuralgia. BoNT could also be effective as a treatment for diabetic neuropathy. It has not been proven to be an effective treatment for occipital neuralgia or complex regional pain syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blocking the GABA transporter GAT-1 ameliorates spinal GABAergic disinhibition and neuropathic pain induced by paclitaxel.

              Paclitaxel is a chemotherapeutic agent widely used for treating carcinomas. Patients receiving paclitaxel often develop neuropathic pain and have a reduced quality of life which hinders the use of this life-saving drug. In this study, we determined the role of GABA transporters in the genesis of paclitaxel-induced neuropathic pain using behavioral tests, electrophysiology, and biochemical techniques. We found that tonic GABA receptor activities in the spinal dorsal horn were reduced in rats with neuropathic pain induced by paclitaxel. In normal controls, tonic GABA receptor activities were mainly controlled by the GABA transporter GAT-1 but not GAT-3. In the spinal dorsal horn, GAT-1 was expressed at presynaptic terminals and astrocytes while GAT-3 was only expressed in astrocytes. In rats with paclitaxel-induced neuropathic pain, the protein expression of GAT-1 was increased while GAT-3 was decreased. This was concurrently associated with an increase in global GABA uptake. The paclitaxel-induced attenuation of GABAergic tonic inhibition was ameliorated by blocking GAT-1 but not GAT-3 transporters. Paclitaxel-induced neuropathic pain was significantly attenuated by the intrathecal injection of a GAT-1 inhibitor. These findings suggest that targeting GAT-1 transporters for reversing disinhibition in the spinal dorsal horn may be a useful approach for treating paclitaxel-induced neuropathic pain. Patients receiving paclitaxel for cancer therapy often develop neuropathic pain and have a reduced quality of life. In this study, we demonstrated that animals treated with paclitaxel develop neuropathic pain, have enhancements of GABA transporter-1 protein expression and global GABA uptake, as well as suppression of GABAergic tonic inhibition in the spinal dorsal horn. Pharmacological inhibition of GABA transporter-1 ameliorates the paclitaxel-induced suppression of GABAergic tonic inhibition and neuropathic pain. Thus, targeting GAT-1 transporters for reversing GABAergic disinhibition in the spinal dorsal horn could be a useful approach for treating paclitaxel-induced neuropathic pain.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                June 2017
                18 April 2017
                18 April 2017
                : 13
                : 6
                : 2783-2786
                Affiliations
                [1 ]Department of Rehabilitation, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
                [2 ]Department of Ultrasound Imaging, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
                Author notes
                Correspondence to: Dr Hua-Xian Chen, Department of Rehabilitation, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, Hubei 441000, P.R. China, E-mail: chen_huaxian1@ 123456163.com
                [*]

                Contributed equally

                Article
                ETM-0-0-4351
                10.3892/etm.2017.4351
                5450774
                2b3c5cbc-a01e-4554-bc99-3ec4bb646533
                Copyright: © Ding et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 08 July 2016
                : 16 March 2017
                Categories
                Articles

                Medicine
                botox-a,chronic sciatic nerve pain,snap-25,mechanical withdrawal threshold,heat pain threshold,excitatory neurotransmitter glutamate glt,gat mrna the inhibitory gaba neurotransmitter transporter

                Comments

                Comment on this article