21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      AEOLIAN PROCESSES AND THE BIOSPHERE

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references336

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosols, climate, and the hydrological cycle.

          Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global iron connections between desert dust, ocean biogeochemistry, and climate.

            The environmental conditions of Earth, including the climate, are determined by physical, chemical, biological, and human interactions that transform and transport materials and energy. This is the "Earth system": a highly complex entity characterized by multiple nonlinear responses and thresholds, with linkages between disparate components. One important part of this system is the iron cycle, in which iron-containing soil dust is transported from land through the atmosphere to the oceans, affecting ocean biogeochemistry and hence having feedback effects on climate and dust production. Here we review the key components of this cycle, identifying critical uncertainties and priorities for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological feedbacks in global desertification.

              Studies of ecosystem processes on the Jornada Experimental Range in southern New Mexico suggest that longterm grazing of semiarid grasslands leads to an increase in the spatial and temporal heterogeneity of water, nitrogen, and other soil resources. Heterogeneity of soil resources promotes invasion by desert shrubs, which leads to a further localization of soil resources under shrub canopies. In the barren area between shrubs, soil fertility is lost by erosion and gaseous emissions. This positive feedback leads to the desertification of formerly productive land in southern New Mexico and in other regions, such as the Sahel. Future desertification is likely to be exacerbated by global climate warming and to cause significant changes in global biogeochemical cycles.
                Bookmark

                Author and article information

                Journal
                REGEEP
                Reviews of Geophysics
                Rev. Geophys.
                American Geophysical Union (AGU)
                8755-1209
                2011
                August 2011
                : 49
                : 3
                Article
                10.1029/2010RG000328
                2b44a210-313d-4da2-b9b3-1d1cc9e0b436
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article