+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      ACE Inhibition Lowers Angiotensin-II-Induced Monocyte Adhesion to HUVEC by Reduction of p65 Translocation and AT1 Expression


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Angiotensin-converting enzyme (ACE) inhibitors interfere with several key events of vascular inflammation resulting in impressive reductions in coronary vascular events. However, in human arteries ACE inhibitors block the production of angiotensin II (AngII) incompletely because of the involvement of alternative pathways in local AngII formation. Therefore, our study concentrated on the presumed modulation by ACE inhibition of local AngII-mediated inflammatory actions by a mechanism independent of blockage of AngII formation. We analyzed the effect of the ACE inhibitor ramiprilat on AngII-dependent cell adhesion molecule (CAM) expression and adhesion of monocytic THP-1 cells to endothelial cells. AngII induced upregulation of P-selectin, VCAM-1 and ICAM-1 on endothelial cells via activation of AT1, which was correlated with enhanced THP-1 adhesion in flow chamber assays. Both enhanced adhesion and adhesion molecule expression were significantly reduced by pretreatment with ramiprilat. Ramiprilat reduced AT1 expression on endothelial cells and decreased the AngII-induced p65 translocation into the nucleus. Diminished AT1 expression and adhesion molecule expression in response to ramiprilat treatment were partially reversed after incubation with a bradykinin 2 receptor antagonist, suggesting that elevated bradykinin levels under ACE inhibition may be involved in the beneficial effect of ACE inhibitors. Thus, modulation of the local AngII system by ramiprilat may at least in part contribute to the benefits of ACE inhibition in the treatment of atherosclerotic diseases.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular inflammation and the renin-angiotensin system.

          It is now well established that vascular inflammation is an independent risk factor for the development of atherosclerosis. In otherwise healthy patients, chronic elevations of circulating interleukin-6 or its biomarkers are predictors for increased risk in the development and progression of ischemic heart disease. Although multifactorial in etiology, vascular inflammation produces atherosclerosis by the continuous recruitment of circulating monocytes into the vessel wall and by contributing to an oxidant-rich inflammatory milieu that induces phenotypic changes in resident (noninflammatory) cells. In addition, the renin-angiotensin system (RAS) has important modulatory activities in the atherogenic process. Recent work has shown that angiotensin II (Ang II) has significant proinflammatory actions in the vascular wall, inducing the production of reactive oxygen species, inflammatory cytokines, and adhesion molecules. These latter effects on gene expression are mediated, at least in part, through the cytoplasmic nuclear factor-kappaB transcription factor. Through these actions, Ang II augments vascular inflammation, induces endothelial dysfunction, and, in so doing, enhances the atherogenic process. Our recent studies have defined a molecular mechanism for a biological positive-feedback loop that explains how vascular inflammation can be self-sustaining through upregulation of the vessel wall Ang II tone. Ang II produced locally by the inflamed vessel induces the synthesis and secretion of interleukin-6, a cytokine that induces synthesis of angiotensinogen in the liver through a janus kinase (JAK)/signal transducer and activator of transcription (STAT)-3 pathway. Enhanced angiotensinogen production, in turn, supplies more substrate to the activated vascular RAS, where locally produced Ang II synergizes with oxidized lipid to perpetuate atherosclerotic vascular inflammation. These observations suggest that one mechanism by which RAS antagonists prevent atherosclerosis is by reducing vascular inflammation. Moreover, antagonizing the vascular nuclear factor-kappaB and/or hepatic JAK/STAT pathways may modulate the atherosclerotic process.
            • Record: found
            • Abstract: not found
            • Article: not found

            NF-kappaB: pivotal mediator or innocent bystander in atherogenesis?

              • Record: found
              • Abstract: not found
              • Article: not found

              Peroxisome Proliferator-activated Receptor α Negatively Regulates the Vascular Inflammatory Gene Response by Negative Cross-talk with Transcription Factors NF-κB and AP-1


                Author and article information

                J Vasc Res
                Journal of Vascular Research
                S. Karger AG
                October 2005
                28 September 2005
                : 42
                : 5
                : 399-407
                aMedical Clinic II, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, and bMedical Clinic III, Technical University of Dresden, Germany; cDepartment of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
                87340 J Vasc Res 2005;42:399–407
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 6, References: 33, Pages: 9
                Research Paper


                Comment on this article