38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mitochondrial dysfunction in diabetic kidney disease

      ,
      Nature Reviews Nephrology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Globally, diabetes is the leading cause of chronic kidney disease and end-stage renal disease, which are major risk factors for cardiovascular disease and death. Despite this burden, the factors that precipitate the development and progression of diabetic kidney disease (DKD) remain to be fully elucidated. Mitochondrial dysfunction is associated with kidney disease in nondiabetic contexts, and increasing evidence suggests that dysfunctional renal mitochondria are pathological mediators of DKD. These complex organelles have a broad range of functions, including the generation of ATP. The kidneys are mitochondrially rich, highly metabolic organs that require vast amounts of ATP for their normal function. The delivery of metabolic substrates for ATP production, such as fatty acids and oxygen, is altered by diabetes. Changes in metabolic fuel sources in diabetes to meet ATP demands result in increased oxygen consumption, which contributes to renal hypoxia. Inherited factors including mutations in genes that impact mitochondrial function and/or substrate delivery may also be important risk factors for DKD. Hence, we postulate that the diabetic milieu and inherited factors that underlie abnormalities in mitochondrial function synergistically drive the development and progression of DKD.

          Related collections

          Author and article information

          Journal
          Nature Reviews Nephrology
          Nat Rev Nephrol
          Springer Nature
          1759-5061
          1759-507X
          February 19 2018
          February 19 2018
          :
          :
          Article
          10.1038/nrneph.2018.9
          29456246
          2b610ce2-da31-4a56-85fb-f00b1b50875d
          © 2018
          History

          Comments

          Comment on this article