6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reversal of diabetic nephropathy (DN) has been achieved in humans and mice, but only rarely and under special circumstances. Since progression of DN is related to podocyte loss, reversal of DN requires restoration of podocytes. Here we identified and quantified potential glomerular progenitor cells that could be a source for restored podocytes. DN was identified in 31 human renal biopsy cases and separated into morphologically early or advanced lesions. Markers of podocytes (WT-1, p57), parietal epithelial cells (claudin-1) and cell proliferation (Ki-67) were identified by immunohistochemistry. Podocyte density was progressively reduced with DN. Cells marking as podocytes (p57) were present infrequently on Bowman's capsule in controls, but significantly increased in histologically early DN. Ki-67 expressing cells were identified on the glomerular tuft and Bowman's capsule in DN, but rarely in controls. Cells marking as PECs were present on the glomerular tuft, particularly in morphologically advanced DN. These findings show evidence of phenotypic plasticity in podocyte and PEC populations and are consistent with studies in the BTBR ob/ob murine model in which reversibility of DN occurs with podocytes potentially regenerating from PEC precursors. Thus, our findings support, but do not prove, that podocytes may regenerate from PEC progenitors in human DN. If so, progression of DN may represent a modifiable net balance between podocyte loss and regeneration.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Pathologic classification of diabetic nephropathy.

          Although pathologic classifications exist for several renal diseases, including IgA nephropathy, focal segmental glomerulosclerosis, and lupus nephritis, a uniform classification for diabetic nephropathy is lacking. Our aim, commissioned by the Research Committee of the Renal Pathology Society, was to develop a consensus classification combining type1 and type 2 diabetic nephropathies. Such a classification should discriminate lesions by various degrees of severity that would be easy to use internationally in clinical practice. We divide diabetic nephropathy into four hierarchical glomerular lesions with a separate evaluation for degrees of interstitial and vascular involvement. Biopsies diagnosed as diabetic nephropathy are classified as follows: Class I, glomerular basement membrane thickening: isolated glomerular basement membrane thickening and only mild, nonspecific changes by light microscopy that do not meet the criteria of classes II through IV. Class II, mesangial expansion, mild (IIa) or severe (IIb): glomeruli classified as mild or severe mesangial expansion but without nodular sclerosis (Kimmelstiel-Wilson lesions) or global glomerulosclerosis in more than 50% of glomeruli. Class III, nodular sclerosis (Kimmelstiel-Wilson lesions): at least one glomerulus with nodular increase in mesangial matrix (Kimmelstiel-Wilson) without changes described in class IV. Class IV, advanced diabetic glomerulosclerosis: more than 50% global glomerulosclerosis with other clinical or pathologic evidence that sclerosis is attributable to diabetic nephropathy. A good interobserver reproducibility for the four classes of DN was shown (intraclass correlation coefficient = 0.84) in a test of this classification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys.

            Regenerative medicine represents a critical clinical goal for patients with ESRD, but the identification of renal adult multipotent progenitor cells has remained elusive. It is demonstrated that in human adult kidneys, a subset of parietal epithelial cells (PEC) in the Bowman's capsule exhibit coexpression of the stem cell markers CD24 and CD133 and of the stem cell-specific transcription factors Oct-4 and BmI-1, in the absence of lineage-specific markers. This CD24+CD133+ PEC population, which could be purified from cultured capsulated glomeruli, revealed self-renewal potential and a high cloning efficiency. Under appropriate culture conditions, individual clones of CD24+CD133+ PEC could be induced to generate mature, functional, tubular cells with phenotypic features of proximal and/or distal tubules, osteogenic cells, adipocytes, and cells that exhibited phenotypic and functional features of neuronal cells. The injection of CD24+CD133+ PEC but not of CD24-CD133- renal cells into SCID mice that had acute renal failure resulted in the regeneration of tubular structures of different portions of the nephron. More important, treatment of acute renal failure with CD24+CD133+ PEC significantly ameliorated the morphologic and functional kidney damage. This study demonstrates the existence and provides the characterization of a population of resident multipotent progenitor cells in adult human glomeruli, potentially opening new avenues for the development of regenerative medicine in patients who have renal diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversal of lesions of diabetic nephropathy after pancreas transplantation.

              In patients with type I diabetes mellitus who do not have uremia and have not received a kidney transplant, pancreas transplantation does not ameliorate established lesions of diabetic nephropathy within five years after transplantation, but the effects of longer periods of normoglycemia are unknown. We studied kidney function and performed renal biopsies before pancreas transplantation and 5 and 10 years thereafter in eight patients with type I diabetes but without uremia who had mild to advanced lesions of diabetic nephropathy at the time of transplantation. The biopsy samples were analyzed morphometrically. All patients had persistently normal glycosylated hemoglobin values after transplantation. The median urinary albumin excretion rate was 103 mg per day before transplantation, 30 mg per day 5 years after transplantation, and 20 mg per day 10 years after transplantation (P=0.07 for the comparison of values at base line and at 5 years; P=0.11 for the comparison between base line and 10 years). The mean (+/-SD) creatinine clearance rate declined from 108+/-20 ml per minute per 1.73 m2 of body-surface area at base line to 74+/-16 ml per minute per 1.73 m2 at 5 years (P<0.001) and 74+/-14 ml per minute per 1.73 m2 at 10 years (P<0.001). The thickness of the glomerular and tubular basement membranes was similar at 5 years (570+/-64 and 928+/-173 nm, respectively) and at base line (594+/-81 and 911+/-133 nm, respectively) but had decreased by 10 years (to 404+/-38 and 690+/-111 nm, respectively; P<0.001 and P=0.004 for the comparisons with the base-line values). The mesangial fractional volume (the proportion of the glomerulus occupied by the mesangium) increased from base line (0.33+/-0.07) to 5 years (0.39+/-0.10, P=0.02) but had decreased at 10 years (0.27+/-0.02, P=0.05 for the comparison with the baseline value and P=0.006 for the comparison with the value at 5 years), mostly because of a reduction in mesangial matrix. Pancreas transplantation can reverse the lesions of diabetic nephropathy, but reversal requires more than five years of normoglycemia.
                Bookmark

                Author and article information

                Journal
                0323470
                5428
                Kidney Int
                Kidney Int.
                Kidney international
                0085-2538
                1523-1755
                20 August 2015
                16 September 2015
                November 2015
                01 May 2016
                : 88
                : 5
                : 1099-1107
                Affiliations
                [1 ]University of Washington, Seattle, Washington
                Author notes
                Corresponding author: Nicole K. Andeen MD, 1959 NE Pacific St, Box 356100, Seattle, WA 98195, nandeen@ 123456uw.edu , phone: 206-986-0129, fax: 206-598-3803
                Article
                NIHMS715772
                10.1038/ki.2015.273
                4653076
                26376129
                2b635cf9-d5b2-410a-b604-b822381c3847

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Nephrology
                podocyte,diabetic nephropathy
                Nephrology
                podocyte, diabetic nephropathy

                Comments

                Comment on this article