41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses

      research-article
      , ,   *
      Molecular Microbiology
      Blackwell Publishing Ltd

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prokaryotic toxin – antitoxin (TA) loci encode mRNA interferases that inhibit translation, either by cleaving mRNA codons at the ribosomal A site or by cleaving any RNA site-specifically. So far, seven mRNA interferases of Escherichia coli have been identified, four of which cleave mRNA by a translation-dependent mechanism. Here, we experimentally confirmed the presence of three novel TA loci in E. coli. We found that the yafNO, higBA (ygjNM) and ygiUT loci encode mRNA interferases related to RelE. YafO and HigB cleaved translated mRNA only, while YgiU cleaved RNA site-specifically at GC[A/U], independently of translation. Thus, YgiU is the first RelE-related mRNA interferase that cleaves mRNA independently of translation, in vivo. All three loci were induced by amino acid starvation, and inhibition of translation although to different degrees. Carbon starvation induced only two of the loci. The yafNO locus was induced by DNA damage, but the transcription originated from the dinB promoter. Thus, our results showed that the different TA loci responded differentially to environmental stresses. Induction of the three loci depended on Lon protease that may sense the environmental stresses and activate TA loci by cleavage of the antitoxins. Transcription of the three TA operons was autoregulated by the antitoxins.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory RNAs in bacteria.

          Bacteria possess numerous and diverse means of gene regulation using RNA molecules, including mRNA leaders that affect expression in cis, small RNAs that bind to proteins or base pair with target RNAs, and CRISPR RNAs that inhibit the uptake of foreign DNA. Although examples of RNA regulators have been known for decades in bacteria, we are only now coming to a full appreciation of their importance and prevalence. Here, we review the known mechanisms and roles of regulatory RNAs, highlight emerging themes, and discuss remaining questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PSIPRED protein structure prediction server.

            The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method. Freely available to non-commercial users at http://globin.bio.warwick.ac.uk/psipred/
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persisters: a distinct physiological state of E. coli

              Background Bacterial populations contain persisters, phenotypic variants that constitute approximately 1% of cells in stationary phase and biofilm cultures. Multidrug tolerance of persisters is largely responsible for the inability of antibiotics to completely eradicate infections. Recent progress in understanding persisters is encouraging, but the main obstacle in understanding their nature was our inability to isolate these elusive cells from a wild-type population since their discovery in 1944. Results We hypothesized that persisters are dormant cells with a low level of translation, and used this to physically sort dim E. coli cells which do not contain sufficient amounts of unstable GFP expressed from a promoter whose activity depends on the growth rate. The dim cells were tolerant to antibiotics and exhibited a gene expression profile distinctly different from those observed for cells in exponential or stationary phases. Genes coding for toxin-antitoxin module proteins were expressed in persisters and are likely contributors to this condition. Conclusion We report a method for persister isolation and conclude that these cells represent a distinct state of bacterial physiology.
                Bookmark

                Author and article information

                Journal
                Mol Microbiol
                mmi
                Molecular Microbiology
                Blackwell Publishing Ltd
                0950-382X
                1365-2958
                January 2010
                03 December 2009
                : 75
                : 2
                : 333-348
                Affiliations
                simpleCentre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University Newcastle NE2 4HH, UK.
                Author notes
                *For correspondence. E-mail kenn.gerdes@ 123456ncl.ac.uk ; Tel. (+44) 191 222 5318; Fax (+44) 191 222 7424.

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www3.interscience.wiley.com/authorresources/onlineopen.html

                Article
                10.1111/j.1365-2958.2009.06969.x
                2814082
                19943910
                2b6459a0-7bd7-4138-9656-9f1ebc9fab65
                Journal compilation © 2010 Blackwell Publishing

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 09 November 2009
                Categories
                Research Articles

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article