23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cutaneous wound healing represents a morphogenetic response to injury and is designed to restore anatomic and physiological function. Human bone marrow mesenchymal stem cell-derived exosomes (hBM-MSC-Ex) are a promising source for cell-free therapy and skin regeneration.

          Methods

          In this study, we investigated the cell regeneration effects and its underlying mechanism of hBM-MSC-Ex on cutaneous wound healing in rats. In vitro studies, we evaluated the role of hBM-MSC-Ex in the two types of skin cells: human keratinocytes (HaCaT) and human dermal fibroblasts (HDFs) for the proliferation. For in vivo studies, we used a full-thickness skin wound model to evaluate the effects of hBM-MSC-Ex on cutaneous wound healing in vivo.

          Results

          The results demonstrated that hBM-MSC-Ex promote both two types of skin cells’ growth effectively and accelerate the cutaneous wound healing. Interestingly, we found that hBM-MSC-Ex significantly downregulated TGF-β1, Smad2, Smad3, and Smad4 expression, while upregulated TGF-β3 and Smad7 expression in the TGF-β/Smad signaling pathway.

          Conclusions

          Our findings indicated that hBM-MSC-Ex effectively promote the cutaneous wound healing through inhibiting the TGF-β/Smad signal pathway. The current results provided a new sight for the therapeutic strategy for the treatment of cutaneous wounds.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          New insights into TGF-β/Smad signaling in tissue fibrosis

          Transforming growth factor-β1 (TGF-β1) is considered as a crucial mediator in tissue fibrosis and causes tissue scarring largely by activating its downstream small mother against decapentaplegic (Smad) signaling. Different TGF-β signalings play different roles in fibrogenesis. TGF-β1 directly activates Smad signaling which triggers pro-fibrotic gene overexpression. Excessive studies have demonstrated that dysregulation of TGF-β1/Smad pathway was an important pathogenic mechanism in tissue fibrosis. Smad2 and Smad3 are the two major downstream regulator that promote TGF-β1-mediated tissue fibrosis, while Smad7 serves as a negative feedback regulator of TGF-β1/Smad pathway thereby protects against TGF-β1-mediated fibrosis. This review presents an overview of the molecular mechanisms of TGF-β/Smad signaling pathway in renal, hepatic, pulmonary and cardiac fibrosis, followed by an in-depth discussion of their molecular mechanisms of intervention effects both in vitro and in vivo. The role of TGF-β/Smad signaling pathway in tumor or cancer is also discussed. Additionally, the current advances also highlight targeting TGF-β/Smad signaling pathway for the prevention of tissue fibrosis. The review reveals comprehensive pathophysiological mechanisms of tissue fibrosis. Particular challenges are presented and placed within the context of future applications against tissue fibrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fibroblasts and myofibroblasts in wound healing

            (Myo)fibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myo)fibroblasts are embedded in a sophisticated extracellular matrix (ECM) that they secrete, and a complex and interactive dialogue exists between (myo)fibroblasts and their microenvironment. In addition to the secretion of the ECM, (myo)fibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myo)fibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myo)fibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis), or during aging, this dialogue between the (myo)fibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myo)fibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis

              Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
                Bookmark

                Author and article information

                Contributors
                jiangtc@jlu.edu.cn
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                24 May 2020
                24 May 2020
                2020
                : 11
                : 198
                Affiliations
                [1 ]GRID grid.64924.3d, ISNI 0000 0004 1760 5735, Department of Cardiology, , The Third Hospital of Jilin University, ; 126 Xiantai St., Changchun, 130033 Jilin China
                [2 ]Jilin Provincial Cardiovascular Research Institute, 126 Xiantai St., Changchun, 130033 Jilin China
                [3 ]GRID grid.430605.4, Department of Pediatric Neurology, , The First Hospital of Jilin University, ; 71 Xinmin St., Changchun, 130021 Jilin China
                Article
                1723
                10.1186/s13287-020-01723-6
                7245763
                32448395
                2b653692-8100-46e5-89ec-104ca1ababb9
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 22 February 2020
                : 6 May 2020
                : 11 May 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81570360
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Molecular medicine
                human bone marrow mesenchymal stem cells,exosomes,wound healing,tgf-β/smad signaling

                Comments

                Comment on this article