10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function

      research-article
      1 , 2 , 3 ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Biomaterials. Electronic dura mater for long-term multimodal neural interfaces.

          The mechanical mismatch between soft neural tissues and stiff neural implants hinders the long-term performance of implantable neuroprostheses. Here, we designed and fabricated soft neural implants with the shape and elasticity of dura mater, the protective membrane of the brain and spinal cord. The electronic dura mater, which we call e-dura, embeds interconnects, electrodes, and chemotrodes that sustain millions of mechanical stretch cycles, electrical stimulation pulses, and chemical injections. These integrated modalities enable multiple neuroprosthetic applications. The soft implants extracted cortical states in freely behaving animals for brain-machine interface and delivered electrochemical spinal neuromodulation that restored locomotion after paralyzing spinal cord injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of sensorimotor learning.

            The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Locomotor primitives in newborn babies and their development.

              How rudimentary movements evolve into sophisticated ones during development remains unclear. It is often assumed that the primitive patterns of neural control are suppressed during development, replaced by entirely new patterns. Here we identified the basic patterns of lumbosacral motoneuron activity from multimuscle recordings in stepping neonates, toddlers, preschoolers, and adults. Surprisingly, we found that the two basic patterns of stepping neonates are retained through development, augmented by two new patterns first revealed in toddlers. Markedly similar patterns were observed also in the rat, cat, macaque, and guineafowl, consistent with the hypothesis that, despite substantial phylogenetic distances and morphological differences, locomotion in several animal species is built starting from common primitives, perhaps related to a common ancestral neural network.
                Bookmark

                Author and article information

                Contributors
                d.farina@imperial.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 October 2017
                18 October 2017
                2017
                : 7
                : 13465
                Affiliations
                [1 ]ISNI 0000 0004 0399 8953, GRID grid.6214.1, Institute of Biomedical Technology and Technical Medicine, Department of Biomechanical Engineering, University of Twente, ; Enschede, The Netherlands
                [2 ]Pain Medicine, Department of Anaesthesiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
                [3 ]ISNI 0000 0001 2113 8111, GRID grid.7445.2, Department of Bioengineering, Imperial College London, ; London, United Kingdom
                Author information
                http://orcid.org/0000-0002-6968-8064
                http://orcid.org/0000-0002-7883-2697
                Article
                13766
                10.1038/s41598-017-13766-6
                5647446
                29044165
                2b683b6a-9398-49b0-9af7-780df372c7a4
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 July 2017
                : 14 September 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article