10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins

      , , , ,
      Soft Matter
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          The development of microgels/nanogels for drug delivery applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in molecular imprinting technology: current status, challenges and highlighted applications.

            Molecular imprinting technology (MIT) concerns formation of selective sites in a polymer matrix with the memory of a template. Recently, molecularly imprinted polymers (MIPs) have aroused extensive attention and been widely applied in many fields, such as solid-phase extraction, chemical sensors and artificial antibodies owing to their desired selectivity, physical robustness, thermal stability, as well as low cost and easy preparation. With the rapid development of MIT as a research hotspot, it faces a number of challenges, involving biological macromolecule imprinting, heterogeneous binding sites, template leakage, incompatibility with aqueous media, low binding capacity and slow mass transfer, which restricts its applications in various aspects. This critical review briefly reviews the current status of MIT, particular emphasis on significant progresses of novel imprinting methods, some challenges and effective strategies for MIT, and highlighted applications of MIPs. Finally, some significant attempts in further developing MIT are also proposed (236 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymeric system for dual growth factor delivery.

              The development of tissues and organs is typically driven by the action of a number of growth factors. However, efforts to regenerate tissues (e.g., bone, blood vessels) typically rely on the delivery of single factors, and this may partially explain the limited clinical utility of many current approaches. One constraint on delivering appropriate combinations of factors is a lack of delivery vehicles that allow for a localized and controlled delivery of more than a single factor. We report a new polymeric system that allows for the tissue-specific delivery of two or more growth factors, with controlled dose and rate of delivery. The utility of this system was investigated in the context of therapeutic angiogenesis. We now demonstrate that dual delivery of vascular endothelial growth factor (VEGF)-165 and platelet-derived growth factor (PDGF)-BB, each with distinct kinetics, from a single, structural polymer scaffold results in the rapid formation of a mature vascular network. This is the first report of a vehicle capable of delivery of multiple angiogenic factors with distinct kinetics, and these results clearly indicate the importance of multiple growth factor action in tissue regeneration and engineering.
                Bookmark

                Author and article information

                Journal
                SMOABF
                Soft Matter
                Soft Matter
                Royal Society of Chemistry (RSC)
                1744-683X
                1744-6848
                2013
                2013
                : 9
                : 14
                : 3840
                Article
                10.1039/c3sm27505a
                2b6f3f88-1856-4a9b-a7b6-2b2df8570fdb
                © 2013
                History

                Comments

                Comment on this article