23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coagulation during elective neurosurgery with hydroxyethyl starch fluid therapy: an observational study with thromboelastometry, fibrinogen and factor XIII

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Several studies have described hypercoagulability in neurosurgery with craniotomy for brain tumor resection. In this study, hydroxyethyl starch (HES) 130/0.42 was used for hemodynamic stabilization and initial blood loss replacement. HES can induce coagulopathy with thromboelastographic signs of decreased clot strength. The aim of this study was to prospectively describe perioperative changes in coagulation during elective craniotomy for brain tumor resection with the present fluid regimen.

          Methods

          Forty patients were included. Perioperative whole-blood samples were collected for EXTEM and FIBTEM assays on rotational thromboelastometry (ROTEM) and plasma fibrinogen analysis immediately before surgery, after 1 L of HES infusion, at the end of surgery and in the morning after surgery. Factor (F)XIII activity, thrombin-antithrombin complex (TAT) and plasmin-α2-antiplasmin complex (PAP) were analysed in the 25 patients receiving ≥1 L of HES.

          Results

          Most patients (37 of 40) received HES infusion (0.5–2 L) during surgery. Preoperative ROTEM clot formation/structure, plasma fibrinogen and FXIII levels were generally within normal range but approached a hypocoagulant state during and at end of surgery. ROTEM variables and fibrinogen levels, but not FXIII, returned to baseline levels in the morning after surgery. Low perioperative fibrinogen levels were common. TAT levels were increased during and after surgery. PAP levels mostly remained within the reference ranges, not indicating excessive fibrinolysis. There were no differences in ROTEM results and fibrinogen levels in patients receiving <1 L HES and ≥1 L HES.

          Conclusions

          Only the increased TAT levels indicated an intra- and postoperative activation of coagulation. On the contrary, all other variables deteriorated towards hypocoagulation but were mainly normalized in the morning after surgery. Although this might be an effect of colloid-induced coagulopathy, we found no dose-dependent effect of HES. The unactivated fibrinolysis indicates that prophylactic use of tranexamic acid does not seem warranted under normal circumstances in elective neurosurgery. Individualized fluid therapy and coagulation factor substitution is of interest for future studies.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis

          Objective To assess the effect of tranexamic acid on blood transfusion, thromboembolic events, and mortality in surgical patients. Design Systematic review and meta-analysis. Data sources Cochrane central register of controlled trials, Medline, and Embase, from inception to September 2011, the World Health Organization International Clinical Trials Registry Platform, and the reference lists of relevant articles. Study selection Randomised controlled trials comparing tranexamic acid with no tranexamic acid or placebo in surgical patients. Outcome measures of interest were the number of patients receiving a blood transfusion; the number of patients with a thromboembolic event (myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism); and the number of deaths. Trials were included irrespective of language or publication status. Results 129 trials, totalling 10 488 patients, carried out between 1972 and 2011 were included. Tranexamic acid reduced the probability of receiving a blood transfusion by a third (risk ratio 0.62, 95% confidence interval 0.58 to 0.65; P<0.001). This effect remained when the analysis was restricted to trials using adequate allocation concealment (0.68, 0.62 to 0.74; P<0.001). The effect of tranexamic acid on myocardial infarction (0.68, 0.43 to 1.09; P=0.11), stroke (1.14, 0.65 to 2.00; P=0.65), deep vein thrombosis (0.86, 0.53 to 1.39; P=0.54), and pulmonary embolism (0.61, 0.25 to 1.47; P=0.27) was uncertain. Fewer deaths occurred in the tranexamic acid group (0.61, 0.38 to 0.98; P=0.04), although when the analysis was restricted to trials using adequate concealment there was considerable uncertainty (0.67, 0.33 to 1.34; P=0.25). Cumulative meta-analysis showed that reliable evidence that tranexamic acid reduces the need for transfusion has been available for over 10 years. Conclusions Strong evidence that tranexamic acid reduces blood transfusion in surgery has been available for many years. Further trials on the effect of tranexamic acid on blood transfusion are unlikely to add useful new information. However, the effect of tranexamic acid on thromboembolic events and mortality remains uncertain. Surgical patients should be made aware of this evidence so that they can make an informed choice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FIBTEM provides early prediction of massive transfusion in trauma

            Introduction Prediction of massive transfusion (MT) among trauma patients is difficult in the early phase of trauma management. Whole-blood thromboelastometry (ROTEM®) tests provide immediate information about the coagulation status of acute bleeding trauma patients. We investigated their value for early prediction of MT. Methods This retrospective study included patients admitted to the AUVA Trauma Centre, Salzburg, Austria, with an injury severity score ≥16, from whom blood samples were taken immediately upon admission to the emergency room (ER). ROTEM® analyses (extrinsically-activated test with tissue factor (EXTEM), intrinsically-activated test using ellagic acid (INTEM) and fibrin-based extrinsically activated test with tissue factor and the platelet inhibitor cytochalasin D (FIBTEM) tests) were performed. We divided patients into two groups: massive transfusion (MT, those who received ≥10 units red blood cell concentrate within 24 hours of admission) and non-MT (those who received 0 to 9 units). Results Of 323 patients included in this study (78.9% male; median age 44 years), 78 were included in the MT group and 245 in the non-MT group. The median injury severity score upon admission to the ER was significantly higher in the MT group than in the non-MT group (42 vs 27, P < 0.0001). EXTEM and INTEM clotting time and clot formation time were significantly prolonged and maximum clot firmness (MCF) was significantly lower in the MT group versus the non-MT group (P < 0.0001 for all comparisons). Of patients admitted with FIBTEM MCF 0 to 3 mm, 85% received MT. The best predictive values for MT were provided by hemoglobin and Quick value (area under receiver operating curve: 0.87 for both parameters). Similarly high predictive values were observed for FIBTEM MCF (0.84) and FIBTEM A10 (clot amplitude at 10 minutes; 0.83). Conclusions FIBTEM A10 and FIBTEM MCF provided similar predictive values for massive transfusion in trauma patients to the most predictive laboratory parameters. Prospective studies are needed to confirm these findings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion.

              Severe bleeding and coagulopathy as a result of massive transfusion are serious clinical conditions that are associated with high mortality. Thromboelastography (TEG) and thromboelastometry (ROTEM) are increasingly used to guide transfusion strategy but their roles remain disputed. To systematically assess the benefits and harms of a TEG or ROTEM guided transfusion strategy in randomized trials involving patients with severe bleeding. Randomized clinical trials (RCTs) were identified from electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2010, Issue 9); MEDLINE; EMBASE; Science Citation Index Expanded; International Web of Science; CINAHL; LILACS; and the Chinese Biomedical Literature Database (up to 31st October 2010). We contacted trial authors, authors of previous reviews, and manufacturers in the field. We included all RCTs, irrespective of blinding or language, that compared transfusion guided by TEG or ROTEM to transfusion guided by clinical judgement and standard laboratory tests, or both. Two authors independently abstracted data; they resolved any disagreements by discussion. We presented pooled estimates of the intervention effects on dichotomous outcomes as relative risks (RR) and on continuous outcomes as mean differences, with 95% confidence intervals (CI). Our primary outcome measure was all cause mortality. We performed subgroup and sensitivity analyses to assess the effect of TEG or ROTEM in adults and children on various clinical and physiological outcomes. We assessed the risk of bias through assessment of trial methodological components and the risk of random error through trial sequential analysis. We included nine RCTs with a total of 776 participants; only one trial had a low risk of bias. We found two ongoing trials but were unable to retrieve any data from them. Compared with standard treatment, TEG or ROTEM showed no statistically significant effect on overall mortality (3.78% versus 5.11%, RR 0.77, 95% CI 0.35 to 1.72; I(2) = 0%) but only five trials provided data on mortality. Our analyses demonstrated a statistically significant effect of TEG or ROTEM on the amount of bleeding (MD -85.05 ml, 95% CI -140.68 to -29.42; I(2) = 26%) but failed to show any statistically significant effect on other predefined outcomes. There is an absence of evidence that TEG or ROTEM improves morbidity or mortality in patients with severe bleeding. Application of a TEG or ROTEM guided transfusion strategy seems to reduce the amount of bleeding but whether this has implications for the clinical condition of patients is still uncertain. More research is needed.
                Bookmark

                Author and article information

                Contributors
                0046-46-171000 , caroline.nilsson@med.lu.se
                Karin.strandberg@med.lu.se
                Martin.engstrom@med.lu.se
                Peter.reinstrup@med.lu.se
                Journal
                Perioper Med (Lond)
                Perioper Med (Lond)
                Perioperative Medicine
                BioMed Central (London )
                2047-0525
                17 August 2016
                17 August 2016
                2016
                : 5
                : 20
                Affiliations
                [1 ]Department of Anaesthesia and Intensive Care, Skåne University Hospital, Lund University, Lund, Sweden
                [2 ]Department of Laboratory Medicine, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
                [3 ]Department of Anaesthesia and Intensive Care, Lund University, Lund, Sweden
                Article
                46
                10.1186/s13741-016-0046-z
                4989364
                27540479
                2b753e76-ef39-4102-b7ec-aed137699f50
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 June 2016
                : 26 July 2016
                Funding
                Funded by: FundRef http://dx.doi.org/http://dx.doi.org/10.13039/100008322, CSL Behring;
                Award ID: Project 829 Project Intensiv- o periop vård
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                factor xiii,fibrinogen,hydroxyethyl starch derivatives,neurosurgery,thromboelastography

                Comments

                Comment on this article