20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxytocin Manipulation Alters Neural Activity in Response to Social Stimuli in Eusocial Naked Mole-Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The social decision-making network (SDMN) is a conserved neural circuit that modulates a range of social behaviors via context-specific patterns of activation that may be controlled in part by oxytocinergic signaling. We have previously characterized oxytocin’s (OT) influence on prosociality in the naked mole-rat, a eusocial mammalian species, and its altered neural distribution between animals of differing social status. Here, we asked two questions: (1) do patterns of activation in the SDMN vary by social context and (2) is functional connectivity of the SDMN altered by OT manipulation? Adult subordinate naked mole-rats were exposed to one of three types of stimuli (three behavioral paradigms: familiar adult conspecific, unfamiliar adult conspecific, or familiar pups) while manipulating OT (three manipulations: saline, OT, or OT antagonist). Immediate early gene c-Fos activity was quantified using immunohistochemistry across SDMN regions. Network analyses indicated that the SDMN is conserved in naked mole-rats and functions in a context-dependent manner. Specific brain regions were recruited with each behavioral paradigm suggesting a role for the nucleus accumbens in social valence and sociosexual interaction, the prefrontal cortex in assessing/establishing social dominance, and the hippocampus in pup recognition. Furthermore, while OT manipulation was generally disruptive to coordinated neural activity, the specific effects were context-dependent supporting the hypothesis that oxytocinergic signaling promotes context appropriate social behaviors by modulating co-ordinated activity of the SDMN.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis.

          All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation. Copyright © 2011 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxytocin in the medial amygdala is essential for social recognition in the mouse.

            Oxytocin (OT) knock-out mice fail to recognize familiar conspecifics after repeated social exposures, despite normal olfactory and spatial learning abilities. OT treatment fully restores social recognition. Here we demonstrate that OT acts in the medial amygdala during the initial exposure to facilitate social recognition. OT given before, but not after, the initial encounter restores social recognition in OT knock-out mice. Using c-Fos immunoreactivity (Fos-IR) as a marker of neuronal activation in this initial encounter, we found similar neuronal activation in the wild-type (WT) and OT knock-out mouse in olfactory bulbs, piriform cortex, cortical amygdala, and the lateral septum. Wild-type, but not OT knock-out mice exhibited an induction of Fos-IR in the medial amygdala. Projections sites of the medial amygdala also failed to show a Fos-IR induction in the OT knock-out mice. OT knock-out, but not WT, mice showed dramatic increases in Fos-IR in the somatosensory cortex and the hippocampus, suggesting alternative processing of social cues in these animals. With site-specific injections of OT and an OT antagonist, we demonstrate that OT receptor activation in the medial amygdala is both necessary and sufficient for social recognition in the mouse.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors.

              Naturally occurring variations in maternal licking/grooming influence neural development and are transmitted from mother to female offspring. We found that the induction of maternal behavior in virgin females through constant exposure to pups (pup sensitization) was significantly shorter in the offspring of High compared with Low licking/grooming mothers, suggesting differences in maternal responsivity. In randomly selected females screened for individual differences in maternal responsivity and subsequently mated, there was a significant and negative correlation (r = -0.73) between the latency to exhibit maternal behavior in the pup sensitization paradigm and the frequency of pup licking/grooming during lactation. Females that were more maternally responsive to pups and that showed increased levels of pup licking/grooming also showed significantly higher oxytocin receptor levels in the medial preoptic area, the lateral septum, the central nucleus (n.) of the amygdala, the paraventricular n. of the hypothalamus, and the bed n. of the stria terminalis. Intracerebroventricular administration of an oxytocin receptor antagonist to mothers on postpartum day 3 completely eliminated the differences in pup licking/grooming, suggesting that differences in oxytocin receptor levels are functionally related to maternal behavior. Finally, estrogen treatment of virgin females significantly increased oxytocin receptor binding in the medial preoptic area and lateral septum of female offspring of High, but not Low, licking/grooming mothers. These findings suggest that maternal licking/grooming influences the development of estrogen sensitivity in brain regions that regulate maternal behavior, providing a potential mechanism for the intergenerational transmission of individual differences in maternal behavior.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                20 November 2018
                2018
                : 12
                : 272
                Affiliations
                [1] 1Department of Cell and Systems Biology, University of Toronto , Toronto, ON, Canada
                [2] 2Department of Psychology, University of Toronto , Toronto, ON, Canada
                [3] 3Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON, Canada
                Author notes

                Edited by: James P. Curley, The University of Texas at Austin, United States

                Reviewed by: Kevin Donald Broad, University College London, United Kingdom; David A. Freeman, The University of Memphis, United States

                These authors have contributed equally to this work

                Article
                10.3389/fnbeh.2018.00272
                6255855
                2b97cfa1-ea42-4459-a1ad-4378beb0074a
                Copyright © 2018 Faykoo-Martinez, Mooney and Holmes.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 July 2018
                : 23 October 2018
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 70, Pages: 14, Words: 0
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Categories
                Neuroscience
                Original Research

                Neurosciences
                social decision-making network,oxytocin,naked mole-rat,eusociality,immediate early gene,social behavior

                Comments

                Comment on this article