120
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Consensus clustering in complex networks

      research-article
      1 , 2 , a , 3 , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The community structure of complex networks reveals both their organization and hidden relationships among their constituents. Most community detection methods currently available are not deterministic, and their results typically depend on the specific random seeds, initial conditions and tie-break rules adopted for their execution. Consensus clustering is used in data analysis to generate stable results out of a set of partitions delivered by stochastic methods. Here we show that consensus clustering can be combined with any existing method in a self-consistent way, enhancing considerably both the stability and the accuracy of the resulting partitions. This framework is also particularly suitable to monitor the evolution of community structure in temporal networks. An application of consensus clustering to a large citation network of physics papers demonstrates its capability to keep track of the birth, death and diversification of topics.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modularity and community structure in networks

          M. Newman (2006)
          Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Uncovering the overlapping community structure of complex networks in nature and society

            Many complex systems in nature and society can be described in terms of networks capturing the intricate web of connections among the units they are made of. A key question is how to interpret the global organization of such networks as the coexistence of their structural subunits (communities) associated with more highly interconnected parts. Identifying these a priori unknown building blocks (such as functionally related proteins, industrial sectors and groups of people) is crucial to the understanding of the structural and functional properties of networks. The existing deterministic methods used for large networks find separated communities, whereas most of the actual networks are made of highly overlapping cohesive groups of nodes. Here we introduce an approach to analysing the main statistical features of the interwoven sets of overlapping communities that makes a step towards uncovering the modular structure of complex systems. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique for exploring overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks. Our studies of collaboration, word-association and protein interaction graphs show that the web of communities has non-trivial correlations and specific scaling properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Maps of random walks on complex networks reveal community structure

              To comprehend the multipartite organization of large-scale biological and social systems, we introduce a new information theoretic approach that reveals community structure in weighted and directed networks. The method decomposes a network into modules by optimally compressing a description of information flows on the network. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of more than 6000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network -- including physics, chemistry, molecular biology, and medicine -- information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                27 March 2012
                2012
                : 2
                : 336
                Affiliations
                [1 ]simpleComplex Networks and Systems Lagrange Lab, ISI Foundation , Via Alassio 11/C, 10126 Torino, Italy
                [2 ]simplePhysics Department, Politecnico di Torino , Corso Duca degli Abruzzi 24, 10129 Torino, Italy
                [3 ]simpleDepartment of Biomedical Engineering and Computational Science, School of Science, Aalto University , P.O. Box 12200, FI-00076, Espoo, Finland
                Author notes
                Article
                srep00336
                10.1038/srep00336
                3313482
                22468223
                2b9906b6-2561-42ac-86ee-d7fec96549de
                Copyright © 2012, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 08 February 2012
                : 09 March 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article