32
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The voice from the hereafter: vocalisations in three species of Atelopus from the Venezuelan Andes, likely to be extinct

      , , , ,
      Herpetozoa
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atelopus is a species-rich group of Neotropical bufonids. Present knowledge on bioacoustics in this genus is relatively poor, as vocalisations have been described in only about one fifth of the ca. 100 species known. All studied members of the genus produce vocalisations although, with a few exceptions, most species lack a middle ear. Nonetheless, hearing has been demonstrated even in earless Atelopus making bioacoustics in these toads an inspiring research field. So far, three structural call types have been identified in the genus. As sympatry is uncommon in Atelopus, calls of the same type often vary little between species. Based on recordings from the 1980s, we describe vocalisations of three Venezuelan species (A. carbonerensis, A. mucubajiensis, A. tamaense) from the Cordillera de Mérida, commonly known as the Andes of Venezuela and the Tamá Massif, a Venezuelan spur of the Colombian Cordillera Oriental. Vocalisations correspond, in part, to the previously identified call types in Atelopus. Evaluation of the vocalisations of the three species presented in this study leads us to recognise a fourth structural call type for the genus. With this new addition, the Atelopus acoustic repertoire now includes (1) pulsed calls, (2) pure tone calls, (3) pulsed short calls and (4) pure tone short calls. The call descriptions provided here are valuable contributions to the bioacoustics of these Venezuelan Atelopus species, since all of them have experienced dramatic population declines that limit possibilities of further studies.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found

          Recent Asian origin of chytrid fungi causing global amphibian declines

          Species in the fungal genus Batrachochytrium are responsible for severe declines in the populations of amphibians globally. The sources of these pathogens have been uncertain. O'Hanlon et al. used genomics on a panel of more than 200 isolates to trace the source of the frog pathogen B. dendrobatidis to a hyperdiverse hotspot in the Korean peninsula (see the Perspective by Lips). Over the past century, the trade in amphibian species has accelerated, and now all lineages of B. dendrobatidis occur in traded amphibians; the fungus has become ubiquitous and is diversifying rapidly. Science , this issue p. [Related article:] 621 ; see also p. [Related article:] 604 The chytrid fungus responsible for global amphibian declines originated in the Korean peninsula and spread during the past century by human trade. Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis , a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, Bd ASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice.

            Vocalizations of anuran amphibians have received much attention in studies of behavioral ecology and physiology, but also provide informative characters for identifying and delimiting species. We here review the terminology and variation of frog calls from a perspective of integrative taxonomy, and provide hands-on protocols for recording, analyzing, comparing, interpreting and describing these sounds. Our focus is on advertisement calls, which serve as premating isolation mechanisms and, therefore, convey important taxonomic information. We provide recommendations for terminology of frog vocalizations, with call, note and pulse being the fundamental subunits to be used in descriptions and comparisons. However, due to the complexity and diversity of these signals, an unequivocal application of the terms call and note can be challenging. We therefore provide two coherent concepts that either follow a note-centered approach (defining uninterrupted units of sound as notes, and their entirety as call) or a call-centered approach (defining uninterrupted units as call whenever they are separated by long silent intervals) in terminology. Based on surveys of literature, we show that numerous call traits can be highly variable within and between individuals of one species. Despite idiosyncrasies of species and higher taxa, the duration of calls or notes, pulse rate within notes, and number of pulses per note appear to be more static within individuals and somewhat less affected by temperature. Therefore, these variables might often be preferable as taxonomic characters over call rate or note rate, which are heavily influenced by various factors. Dominant frequency is also comparatively static and only weakly affected by temperature, but depends strongly on body size. As with other taxonomic characters, strong call divergence is typically indicative of species-level differences, whereas call similarities of two populations are no evidence for them being conspecific. Taxonomic conclusions can especially be drawn when the general advertisement call structure of two candidate species is radically different and qualitative call differences are thus observed. On the other hand, quantitative differences in call traits might substantially vary within and among conspecific populations, and require careful evaluation and analysis. We provide guidelines for the taxonomic interpretation of advertisement call differences in sympatric and allopatric situations, and emphasize the need for an integrative use of multiple datasets (bio-acoustics, morphology, genetics), particularly for allopatric scenarios. We show that small-sized frogs often emit calls with frequency components in the ultrasound spectrum, although it is unlikely that these high frequencies are of biological relevance for the majority of them, and we illustrate that detection of upper harmonics depends also on recording distance because higher frequencies are attenuated more strongly. Bioacoustics remains a prime approach in integrative taxonomy of anurans if uncertainty due to possible intraspecific variation and technical artifacts is adequately considered and acknowledged.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Catastrophic Population Declines and Extinctions in Neotropical Harlequin Frogs (Bufonidae: Atelopus)1

                Bookmark

                Author and article information

                Journal
                Herpetozoa
                Herpetozoa
                Pensoft Publishers
                2682-955X
                1013-4425
                December 04 2019
                December 04 2019
                : 32
                : 267-275
                Article
                10.3897/herpetozoa.32.e39192
                2ba5bdea-6c53-41d9-8406-bdf5b58c497d
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article