73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Navigation-related structural change in the hippocampi of taxi drivers

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Structural MRIs of the brains of humans with extensive navigation experience, licensed London taxi drivers, were analyzed and compared with those of control subjects who did not drive taxis. The posterior hippocampi of taxi drivers were significantly larger relative to those of control subjects. A more anterior hippocampal region was larger in control subjects than in taxi drivers. Hippocampal volume correlated with the amount of time spent as a taxi driver (positively in the posterior and negatively in the anterior hippocampus). These data are in accordance with the idea that the posterior hippocampus stores a spatial representation of the environment and can expand regionally to accommodate elaboration of this representation in people with a high dependence on navigational skills. It seems that there is a capacity for local plastic change in the structure of the healthy adult human brain in response to environmental demands.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Episodic and declarative memory: role of the hippocampus.

          The fact that medial temporal lobe structures, including the hippocampus, are critical for declarative memory is firmly established by now. The understanding of the role that these structures play in declarative memory, however, despite great efforts spent in the quest, has eluded investigators so far. Given the existing scenario, novel ideas that hold the promise of clarifying matters should be eagerly sought. One such idea was recently proposed by Vargha-Khadem and her colleagues (Science 1997; 277:376-380) on the basis of their study of three young people suffering from anterograde amnesia caused by early-onset hippocampal pathology. The idea is that the hippocampus is necessary for remembering ongoing life's experiences (episodic memory), but not necessary for the acquisition of factual knowledge (semantic memory). We discuss the reasons why this novel proposal makes good sense and why it and its ramifications should be vigorously pursued. We review and compare declarative and episodic theories of amnesia, and argue that the findings reported by Vargha-Khadem and her colleagues fit well into an episodic theory that retains components already publicized, and adds new ones suggested by the Vargha-Khadem et al. study. Existing components of this theory include the idea that acquisition of factual knowledge can occur independently of episodic memory, and the idea that in anterograde amnesia it is quite possible for episodic memory to be more severely impaired than semantic memory. We suggest a realignment of organization of memory such that declarative memory is defined in terms of features and properties that are common to both episodic and semantic memory. The organization of memory thus modified gives greater precision to the Vargha-Khadem et al. neuroanatomical model in which declarative memory depends on perihippocampal cortical regions but not on the hippocampus, whereas episodic memory, which is separate from declarative memory, depends on the hippocampus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo evidence of structural brain asymmetry in musicians.

            Certain human talents, such as musical ability, have been associated with left-right differences in brain structure and function. In vivo magnetic resonance morphometry of the brain in musicians was used to measure the anatomical asymmetry of the planum temporale, a brain area containing auditory association cortex and previously shown to be a marker of structural and functional asymmetry. Musicians with perfect pitch revealed stronger leftward planum temporale asymmetry than nonmusicians or musicians without perfect pitch. The results indicate that outstanding musical ability is associated with increased leftward asymmetry of cortex subserving music-related functions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Spatial learning with a minislab in the dorsal hippocampus.

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 11 2000
                March 14 2000
                April 11 2000
                : 97
                : 8
                : 4398-4403
                Article
                10.1073/pnas.070039597
                18253
                10716738
                2ba85ff6-ea60-4293-a9a0-0ab2a2cb408c
                © 2000
                History

                Comments

                Comment on this article