Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

The Watershed as A Conceptual Framework for the Study of Environmental and Human Health

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The watershed provides a physical basis for establishing linkages between aquatic contaminants, environmental health and human health. Current attempts to establish such linkages are limited by environmental and epidemiological constraints. Environmental limitations include difficulties in characterizing the temporal and spatial dynamics of agricultural runoff, in fully understanding the degradation and metabolism of these compounds in the environment, and in understanding complex mixtures. Epidemiological limitations include difficulties associated with the organization of risk factor data and uncertainty about which measurable endpoints are most appropriate for an agricultural setting. Nevertheless, it is our contention that an adoption of the watershed concept can alleviate some of these difficulties. From an environmental perspective, the watershed concept helps identify differences in land use and application of agrichemicals at a level of resolution relevant to human health outcomes. From an epidemiological perspective, the watershed concept places data into a construct with environmental relevance. In this perspectives paper, we discuss how the watershed can provide a conceptual framework for studies in environmental and human health.

      Related collections

      Most cited references 22

      • Record: found
      • Abstract: found
      • Article: not found

      Decrease in Anogenital Distance among Male Infants with Prenatal Phthalate Exposure

      Prenatal phthalate exposure impairs testicular function and shortens anogenital distance (AGD) in male rodents. We present data from the first study to examine AGD and other genital measurements in relation to prenatal phthalate exposure in humans. A standardized measure of AGD was obtained in 134 boys 2–36 months of age. AGD was significantly correlated with penile volume (R = 0.27, p = 0.001) and the proportion of boys with incomplete testicular descent (R = 0.20, p = 0.02). We defined the anogenital index (AGI) as AGD divided by weight at examination [AGI = AGD/weight (mm/kg)] and calculated the age-adjusted AGI by regression analysis. We examined nine phthalate monoester metabolites, measured in prenatal urine samples, as predictors of age-adjusted AGI in regression and categorical analyses that included all participants with prenatal urine samples (n = 85). Urinary concentrations of four phthalate metabolites [monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), and monoisobutyl phthalate (MiBP)] were inversely related to AGI. After adjusting for age at examination, p-values for regression coefficients ranged from 0.007 to 0.097. Comparing boys with prenatal MBP concentration in the highest quartile with those in the lowest quartile, the odds ratio for a shorter than expected AGI was 10.2 (95% confidence interval, 2.5 to 42.2). The corresponding odds ratios for MEP, MBzP, and MiBP were 4.7, 3.8, and 9.1, respectively (all p-values < 0.05). We defined a summary phthalate score to quantify joint exposure to these four phthalate metabolites. The age-adjusted AGI decreased significantly with increasing phthalate score (p-value for slope = 0.009). The associations between male genital development and phthalate exposure seen here are consistent with the phthalate-related syndrome of incomplete virilization that has been reported in prenatally exposed rodents. The median concentrations of phthalate metabolites that are associated with short AGI and incomplete testicular descent are below those found in one-quarter of the female population of the United States, based on a nationwide sample. These data support the hypothesis that prenatal phthalate exposure at environmental levels can adversely affect male reproductive development in humans.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Male reproductive health and environmental xenoestrogens.

        Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention. Images Figure 3. A Figure 3. B Figure 3. C Figure 3. D Figure 3. E Figure 3. F
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity.

          Information concerning the fundamental mechanisms of action of both natural and environmental hormones, combined with information concerning endogenous hormone concentrations, reveals how endocrine-disrupting chemicals with estrogenic activity (EEDCs) can be active at concentrations far below those currently being tested in toxicological studies. Using only very high doses in toxicological studies of EEDCs thus can dramatically underestimate bioactivity. Specifically: a) The hormonal action mechanisms and the physiology of delivery of EEDCs predict with accuracy the low-dose ranges of biological activity, which have been missed by traditional toxicological testing. b) Toxicology assumes that it is valid to extrapolate linearly from high doses over a very wide dose range to predict responses at doses within the physiological range of receptor occupancy for an EEDC; however, because receptor-mediated responses saturate, this assumption is invalid. c) Furthermore, receptor-mediated responses can first increase and then decrease as dose increases, contradicting the assumption that dose-response relationships are monotonic. d) Exogenous estrogens modulate a system that is physiologically active and thus is already above threshold, contradicting the traditional toxicological assumption of thresholds for endocrine responses to EEDCs. These four fundamental issues are problematic for risk assessment methods used by regulatory agencies, because they challenge the traditional use of extrapolation from high-dose testing to predict responses at the much lower environmentally relevant doses. These doses are within the range of current exposures to numerous chemicals in wildlife and humans. These problems are exacerbated by the fact that the type of positive and negative controls appropriate to the study of endocrine responses are not part of traditional toxicological testing and are frequently omitted, or when present, have been misinterpreted.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Environmental, Agricultural and Occupational Health, 987850 Nebraska Medical Center, Omaha, NE 68198
            [2 ]Department of Biology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182
            [3 ]Department of Epidemiology, 987850 Nebraska Medical Center Omaha, NE 68198
            [4 ]School of Natural Resources, 3310 Holdrege St., University of Nebraska-Lincoln, Lincoln, NE 68583-0996
            Author notes
            Correspondence: Alan S. Kolok, 6001 Dodge Street, Department of Biology, University of Nebraska at Omaha Omaha, Nebraska 68182-0040. Tel: (402) 554-3545; Fax: (402) 554-3532; Email: akolok@ 123456unomaha.edu
            Journal
            Environ Health Insights
            Environmental Health Insights
            Environmental Health Insights
            Libertas Academica
            1178-6302
            2009
            18 February 2009
            : 3
            : 1-10
            2872567
            20508751
            ehi-2009-001
            © 2009 by the authors

            This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

            Categories
            Review

            Comments

            Comment on this article