12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of N-acetylgalactosaminyltransferase 3 in poorly differentiated pancreatic cancer: augmented aggressiveness and aberrant ErbB family glycosylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Aberrant glycosylation of several proteins underlie pancreatic ductal adenocarcinoma (PDAC) progression and metastasis. O-glycosylation is initiated by a family of enzymes known as polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts/GALNTs). In this study, we investigated the role of the O-glycosyltransferase GALNT3 in PDAC.

          Methods:

          Immunohistochemistry staining of GALNT3 was performed on normal, inflammatory and neoplastic pancreatic tissues. Several in vitro functional assays such as proliferation, colony formation, migration and tumour–endothelium adhesion assay were conducted in GALNT3 knockdown PDAC cells to investigate its role in disease aggressiveness. Expression of signalling molecules involved in growth and motility was evaluated using western blotting. Effect of GALNT3 knockdown on glycosylation was examined by lectin pull-down assay.

          Results:

          N-acetylgalactosaminyl transferase 3 expression is significantly decreased in poorly differentiated PDAC cells and tissues as compared with well/moderately differentiated PDAC. Further, knockdown of GALNT3 resulted in increased expression of poorly differentiated PDAC markers, augmented growth, motility and tumour–endothelium adhesion. Pull-down assay revealed that O-glycans (Tn and T) on EGFR and Her2 were altered in PDAC cells, which was accompanied by their increased phosphorylation.

          Conclusions:

          Our study indicates that loss of GALNT3 occurs in poorly differentiated PDAC, which is associated with the increased aggressiveness and altered glycosylation of ErbB family proteins.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family.

          Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells

            SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance, in which it impairs cell growth and tumorigenicity. However, the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report, we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However, ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21Cip1 and p27Kip1 induction, whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1, ESA and CD44. Importantly, we show that SOX2 is enriched in the ESA+/CD44+ CSC population from two different patient samples. Moreover, we show that SOX2 directly binds to the Snail, Slug and Twist promoters, leading to a loss of E-Cadherin and ZO-1 expression. Taken together, our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype, suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Golgi glycosylation.

              Glycosylation is a very common modification of protein and lipid, and most glycosylation reactions occur in the Golgi. Although the transfer of initial sugar(s) to glycoproteins or glycolipids occurs in the ER or on the ER membrane, the subsequent addition of the many different sugars that make up a mature glycan is accomplished in the Golgi. Golgi membranes are studded with glycosyltransferases, glycosidases, and nucleotide sugar transporters arrayed in a generally ordered manner from the cis-Golgi to the trans-Golgi network (TGN), such that each activity is able to act on specific substrate(s) generated earlier in the pathway. The spectrum of glycosyltransferases and other activities that effect glycosylation may vary with cell type, and thus the final complement of glycans on glycoconjugates is variable. In addition, glycan synthesis is affected by Golgi pH, the integrity of Golgi peripheral membrane proteins, growth factor signaling, Golgi membrane dynamics, and cellular stress. Knowledge of Golgi glycosylation has fostered the development of assays to identify mechanisms of intracellular vesicular trafficking and facilitated glycosylation engineering of recombinant glycoproteins.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                Br. J. Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                14 June 2016
                17 May 2016
                : 114
                : 12
                : 1376-1386
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, NE 68198-5870, USA
                [2 ]Department of Biostatistics, UNMC College of Public Health, UNMC , Omaha, NE 68198-4375, USA
                [3 ]Department of Pathology and Microbiology, UNMC , Omaha, NE 68198-5900, USA
                [4 ]Fred and Pamela Buffett Cancer Center, UNMC , Omaha, NE 68198, USA
                [5 ]Eppley Institute for Research in Cancer and Allied Diseases, UNMC , Omaha, NE 68198-5950, USA
                Author notes
                Article
                bjc2016116
                10.1038/bjc.2016.116
                4984453
                27187683
                2baa30f3-a62f-44bc-9959-ebcbc0a94bf4
                Copyright © 2016 Cancer Research UK

                From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 20 March 2016
                : 04 April 2016
                : 06 April 2016
                Categories
                Molecular Diagnostics

                Oncology & Radiotherapy
                o-glycosylation,galnt3,pancreatic cancer,egfr,her2,poorly differentiated adenocarcinoma

                Comments

                Comment on this article