13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Culturally Relevant Smartphone-Delivered Physical Activity Intervention for African American Women: Development and Initial Usability Tests of Smart Walk

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Smart Walk is a culturally relevant, social cognitive theory–based, smartphone-delivered intervention designed to increase physical activity (PA) and reduce cardiometabolic disease risk among African American (AA) women.

          Objective

          This study aimed to describe the development and initial usability testing results of Smart Walk.

          Methods

          Smart Walk was developed in 5 phases. Phases 1 to 3 focused on initial intervention development, phase 4 involved usability testing, and phase 5 included intervention refinement based on usability testing results. In phase 1, a series of 9 focus groups with 25 AA women (mean age 38.5 years, SD 7.8; mean BMI 39.4 kg/m2, SD 7.3) was used to identify cultural factors associated with PA and ascertain how constructs of social cognitive theory can be leveraged in the design of a PA intervention. Phase 2 included the analysis of phase 1 qualitative data and development of the structured PA intervention. Phase 3 focused on the technical development of the smartphone app used to deliver the intervention. Phase 4 consisted of a 1-month usability trial of Smart Walk (n=12 women; mean age 35.0 years, SD 8.5; mean BMI 40 kg/m2, SD 5.0). Phase 5 included refinement of the intervention based on the usability trial results.

          Results

          The 5-phase process resulted in the development of the Smart Walk smartphone-delivered PA intervention. This PA intervention was designed to target social cognitive theory constructs of behavioral capability, outcome expectations, social support, self-efficacy, and self-regulation and address deep structure sociocultural characteristics of collectivism, racial pride, and body appearance preferences of AA women. Key features of the smartphone app included (1) personal profile pages, (2) multimedia PA promotion modules (ie, electronic text and videos), (3) discussion boards, and (4) a PA self-monitoring tool. Participants also received 3 PA promotion text messages each week.

          Conclusions

          The development process of Smart Walk was designed to maximize the usability, cultural relevance, and impact of the smartphone-delivered PA intervention.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiovascular Health in African Americans: A Scientific Statement From the American Heart Association

          Population-wide reductions in cardiovascular disease incidence and mortality have not been shared equally by African Americans. The burden of cardiovascular disease in the African American community remains high and is a primary cause of disparities in life expectancy between African Americans and whites. The objectives of the present scientific statement are to describe cardiovascular health in African Americans and to highlight unique considerations for disease prevention and management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Meta-analysis of internet-delivered interventions to increase physical activity levels

            Many internet-delivered physical activity behaviour change programs have been developed and evaluated. However, further evidence is required to ascertain the overall effectiveness of such interventions. The objective of the present review was to evaluate the effectiveness of internet-delivered interventions to increase physical activity, whilst also examining the effect of intervention moderators. A systematic search strategy identified relevant studies published in the English-language from Pubmed, Proquest, Scopus, PsychINFO, CINHAL, and Sport Discuss (January 1990 – June 2011). Eligible studies were required to include an internet-delivered intervention, target an adult population, measure and target physical activity as an outcome variable, and include a comparison group that did not receive internet-delivered materials. Studies were coded independently by two investigators. Overall effect sizes were combined based on the fixed effect model. Homogeneity and subsequent exploratory moderator analysis was undertaken. A total of 34 articles were identified for inclusion. The overall mean effect of internet-delivered interventions on physical activity was d = 0.14 (p = 0.00). Fixed-effect analysis revealed significant heterogeneity across studies (Q = 73.75; p = 0.00). Moderating variables such as larger sample size, screening for baseline physical activity levels and the inclusion of educational components significantly increased intervention effectiveness. Results of the meta-analysis support the delivery of internet-delivered interventions in producing positive changes in physical activity, however effect sizes were small. The ability of internet-delivered interventions to produce meaningful change in long-term physical activity remains unclear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Exercise and Type 2 Diabetes

              Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes, many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay type 2 diabetes, along with positively impacting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower risk of type 2 diabetes by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes mellitus, and safe and effective practices for PA with diabetes-related complications. Diabetes has become a widespread epidemic, primarily due to increasing prevalence and incidence of type 2 diabetes. According to the Centers for Disease Control and Prevention, in 2007 almost 24 million Americans had diabetes, with one-quarter of those, or six million, undiagnosed (1). Currently, it is estimated that almost 60 million U.S. residents also have prediabetes—a condition in which blood glucose levels are above normal—thus greatly increasing their risk of type 2 diabetes (1). Lifetime risk estimates suggest that one in three Americans born in 2000 or later will develop diabetes, but in high-risk ethnic populations, closer to 50% may develop it (2). Diabetes is a significant cause of premature mortality and morbidity related to cardiovascular disease, blindness, kidney and nerve disease, and amputation (1). Although regular PA may prevent or delay diabetes and its complications (3 –10), the majority of people with type 2 diabetes are not active (11). In this article, the broader term “physical activity” (defined as bodily movement produced by the contraction of skeletal muscle that substantially increases energy expenditure) is used interchangeably with “exercise,” which is defined as a subset of PA done with the intention of developing physical fitness (i.e., cardiovascular, strength, and flexibility training). The intent is to recognize that many types of physical movement may have a positive impact on physical fitness, morbidity, and mortality in individuals with type 2 diabetes. Conclusion Exercise plays a major role in the prevention and control of insulin resistance, prediabetes, gestational diabetes mellitus, type 2 diabetes, and diabetes-related health complications. Both aerobic training and resistance training improve insulin action, at least acutely, and can assist with management of blood glucose levels, lipids, blood pressure, cardiovascular risk, mortality, and quality of life, but exercise must be undertaken regularly to have continued benefits and likely include regular training of varying types. Most people with type 2 diabetes can perform exercise safely, as long as certain precautions are taken. The inclusion of an exercise program or other means of increasing overall PA is critical for optimal health in individuals with type 2 diabetes. Both the American College of Sports Medicine (ACSM) and the American Diabetes Association (ADA) reviewed the relevant, published research and developed the recommendations that are defined in Table 1 and listed in Table 2. The entire position statement can be accessed online at http://care.diabetesjournals.org. Table 1 Evidence categories for ACSM and evidence-grading system for clinical practice recommendations for ADA I. ACSM evidence categories Evidence category Source of evidence Definition A Randomized, controlled trials (overwhelming data) Provides a consistent pattern of findings with substantial studies B Randomized, controlled trials (limited data) Few randomized trials exist, which are small in size, and results are inconsistent C Nonrandomized trials, observational studies Outcomes are from uncontrolled, nonrandomized, and/or observational studies D Panel consensus judgment Panel's expert opinion when the evidence is insufficient to place it in categories A through C II. ADA evidence-grading system for clinical practice recommendations Level of evidence Description A Clear evidence from well-conducted, generalizable, randomized, controlled trials that are adequately powered, including the following: Evidence from a well-conducted multicenter trial Evidence from a meta-analysis that incorporated quality ratings in the analysis Compelling nonexperimental evidence, i.e., the “all-or-none” rule developed by the Centre for Evidence-Based Medicine at Oxford Supportive evidence from well-conducted, randomized, controlled trials that are adequately powered, including the following: Evidence from a well-conducted trial at one or more institutions Evidence from a meta-analysis that incorporated quality ratings in the analysis B Supportive evidence from well-conducted cohort studies, including the following: Evidence from a well-conducted prospective cohort study or registry Evidence from a well-conducted meta-analysis of cohort studies Supportive evidence from a well-conducted case-control study C Supportive evidence from poorly controlled or uncontrolled studies, including the following: Evidence from randomized clinical trials with one or more major or three or more minor methodological flaws that could invalidate the results Evidence from observational studies with high potential for bias (such as case series with comparison to historical controls) Evidence from case series or case reports Conflicting evidence with the weight of evidence supporting the recommendation E Expert consensus or clinical experience Table 2 Summary of ACSM evidence and ADA clinical practice recommendation statements ACSM evidence and ADA clinical practice recommendation statements ACSM evidence category (A, highest; D, lowest)/ ADA level of evidence (A, highest; E, lowest) Acute effects of exercise • PA causes increased glucose uptake into active muscles balanced by hepatic glucose production, with a greater reliance on carbohydrate to fuel muscular activity as intensity increases. A/* • Insulin-stimulated blood glucose uptake into skeletal muscle predominates at rest and is impaired in type 2 diabetes, while muscular contractions stimulate blood glucose transport via a separate, additive mechanism not impaired by insulin resistance or type 2 diabetes. A/* • Although moderate aerobic exercise improves blood glucose and insulin action acutely, the risk of exercise-induced hypoglycemia is minimal without use of exogenous insulin or insulin secretagogues. Transient hyperglycemia can follow intense PA. C/* • The acute effects of resistance exercise in type 2 diabetes have not been reported, but result in lower fasting blood glucose levels for at least 24 h postexercise in individuals with impaired fasting glucose. C/* • A combination of aerobic and resistance exercise training may be more effective in improving blood glucose control than either alone; however, more studies are needed to determine whether total caloric expenditure, exercise duration, or exercise mode is responsible. B/* • Milder forms of exercise (e.g., tai chi, yoga) have shown mixed results. C/* • PA can result in acute improvements in systemic insulin action lasting from 2 to 72 h. A/* Chronic effects of exercise training • Both aerobic and resistance training improve insulin action, blood glucose control, and fat oxidation and storage in muscle. B/* • Resistance exercise enhances skeletal muscle mass. A/* • Blood lipid responses to training are mixed but may result in a small reduction in LDL cholesterol with no change in HDL cholesterol or triglycerides. Combined weight loss and PA may be more effective than aerobic exercise training alone on lipids. C/* • Aerobic training may slightly reduce systolic blood pressure, but reductions in diastolic blood pressure are less common, in individuals with type 2 diabetes. C/* • Observational studies suggest that greater PA and fitness are associated with a lower risk of all-cause and cardiovascular mortality. C/* • Recommended levels of PA may help produce weight loss. However, up to 60 min/day may be required when relying on exercise alone for weight loss. C/* • Individuals with type 2 diabetes engaged in supervised training exhibit greater compliance and blood glucose control than those undertaking exercise training without supervision. B/* • Increased PA and physical fitness can reduce symptoms of depression and improve health-related quality of life in those with type 2 diabetes. B/* PA and prevention of type 2 diabetes • At least 2.5 h/week of moderate to vigorous PA should be undertaken as part of lifestyle changes to prevent type 2 diabetes onset in high-risk adults. A/A PA in prevention and control of gestational diabetes mellitus • Epidemiological studies suggest that higher levels of PA may reduce risk of developing gestational diabetes mellitus during pregnancy. C/* • Randomized controlled trials suggest that moderate exercise may lower maternal blood glucose levels in gestational diabetes mellitus. B/* Preexercise evaluation • Before undertaking exercise more intense than brisk walking, sedentary persons with type 2 diabetes will likely benefit from an evaluation by a physician. Electrocardiogram exercise stress testing for asymptomatic individuals at low risk of coronary artery disease is not recommended but may be indicated for higher risk. C/C Recommended PA participation for persons with type 2 diabetes • Persons with type 2 diabetes should undertake at least 150 min/week of moderate to vigorous aerobic exercise spread out over at least 3 days during the week, with no more than 2 consecutive days between bouts of aerobic activity. B/B • In addition to aerobic training, persons with type 2 diabetes should undertake moderate to vigorous resistance training at least 2–3 days/week. B/B • Supervised and combined aerobic and resistance training may confer additional health benefits, although milder forms of PA (such as yoga) have shown mixed results. Persons with type 2 diabetes are encouraged to increase their total daily unstructured PA. Flexibility training may be included but should not be undertaken in place of other recommended types of PA. B/C Exercise with nonoptimal blood glucose control • Individuals with type 2 diabetes may engage in PA, using caution when exercising with blood glucose levels exceeding 300 mg/dl (16.7 mmol/l) without ketosis, provided they are feeling well and are adequately hydrated. C/E • Persons with type 2 diabetes not using insulin or insulin secretagogues are unlikely to experience hypoglycemia related to PA. Users of insulin and insulin secretagogues are advised to supplement with carbohydrate as needed to prevent hypoglycemia during and after exercise. C/C Medication effects on exercise responses • Medication dosage adjustments to prevent exercise-associated hypoglycemia may be required by individuals using insulin or certain insulin secretagogues. Most other medications prescribed for concomitant health problems do not affect exercise, with the exception of β-blockers, some diuretics, and statins. C/C Exercise with long-term complications of diabetes • Known cardiovascular disease is not an absolute contraindication to exercise. Individuals with angina classified as moderate or high risk should likely begin exercise in a supervised cardiac rehabilitation program. PA is advised for anyone with peripheral artery disease. C/C • Individuals with peripheral neuropathy and without acute ulceration may participate in moderate weight-bearing exercise. Comprehensive foot care including daily inspection of feet and use of proper footwear is recommended for prevention and early detection of sores or ulcers. Moderate walking likely does not increase risk of foot ulcers or re-ulceration with peripheral neuropathy. B/B • Individuals with cardiac autonomic neuropathy should be screened and receive physician approval and possibly an exercise stress test prior to exercise initiation. Exercise intensity is best prescribed using the heart rate reserve method with direct measurement of maximal heart rate. C/C • Individuals with uncontrolled proliferative retinopathy should avoid activities that greatly increase intraocular pressure and hemorrhage risk. D/E • Exercise training increases physical function and quality of life in individuals with kidney disease and may even be undertaken during dialysis sessions. The presence of microabuminuria per se does not necessitate exercise restrictions. C/C Adoption and maintenance of exercise by persons with diabetes • Efforts to promote PA should focus on developing self-efficacy and fostering social support from family, friends, and health care providers. Encouraging mild or moderate PA may be most beneficial to adoption and maintenance of regular PA participation. Lifestyle interventions may have some efficacy in promoting PA behavior. B/B *No recommendation given.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Mhealth Uhealth
                JMIR Mhealth Uhealth
                JMU
                JMIR mHealth and uHealth
                JMIR Publications (Toronto, Canada )
                2291-5222
                March 2020
                2 March 2020
                : 8
                : 3
                : e15346
                Affiliations
                [1 ] Center for Health Promotion and Disease Prevention Edson College of Nursing and Health Innovation Arizona State University Phoenix, AZ United States
                [2 ] College of Health Solutions Arizona State University Phoenix, AZ United States
                [3 ] Southwest Interdisciplinary Research Center Arizona State University Phoenix, AZ United States
                [4 ] College of Health and Human Services San Diego State University San Diego, CA United States
                [5 ] Edson College of Nursing and Health Innovation Arizona State University Phoenix, AZ United States
                [6 ] Shanghai University of Sport Yangpu Qu, Shanghai Shi China
                Author notes
                Corresponding Author: Rodney P P Joseph rodney.joseph@ 123456asu.edu
                Author information
                https://orcid.org/0000-0001-5162-7637
                https://orcid.org/0000-0001-8702-9428
                https://orcid.org/0000-0001-8089-0725
                https://orcid.org/0000-0001-6310-1472
                https://orcid.org/0000-0002-0468-8995
                https://orcid.org/0000-0001-9136-5459
                https://orcid.org/0000-0001-9969-6244
                https://orcid.org/0000-0002-1981-4245
                https://orcid.org/0000-0001-5127-5336
                https://orcid.org/0000-0002-4199-692X
                Article
                v8i3e15346
                10.2196/15346
                7076402
                32130198
                2bb3f467-f5e7-4a9d-ba4d-842e339968be
                ©Rodney P P Joseph, Colleen Keller, Sonia Vega-López, Marc A Adams, Rebekah English, Kevin Hollingshead, Steven P Hooker, Michael Todd, Glenn A Gaesser, Barbara E Ainsworth. Originally published in JMIR mHealth and uHealth (http://mhealth.jmir.org), 02.03.2020.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/, as well as this copyright and license information must be included.

                History
                : 3 July 2019
                : 3 October 2019
                : 7 November 2019
                : 16 December 2019
                Categories
                Original Paper
                Original Paper

                ehealth,mhealth,exercise,minority health,primary prevention,heart diseases,african-american

                Comments

                Comment on this article