13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      IRF3 regulates cardiac fibrosis but not hypertrophy in mice during angiotensin II-induced hypertension.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypertension is a typical modern lifestyle-related disease that is closely associated with the development of cardiovascular disorders. Elevation of angiotensin II (ANG II) is one of several critical factors for hypertension and heart failure; however, the mechanisms underlying the ANG II-mediated pathogenesis are still poorly understood. Here, we show that ANG II-mediated cardiac fibrosis, but not hypertrophy, is regulated by interferon regulatory factor 3 (IRF3), which until now has been exclusively studied in the innate immune system. In a ANG II-infusion mouse model (3.0 mg/kg/d), we compared IRF3-deficient mice (Irf3(-/-)/Bcl2l12(-/-)) with matched wild-type (WT) controls. The development of cardiac fibrosis [3.95 ± 0.62% (WT) vs. 1.41 ± 0.46% (Irf3(-/-)/Bcl2l12(-/-)); P<0.01] and accompanied reduction in left ventricle end-diastolic dimension [2.89 ± 0.10 mm (WT) vs. 3.51 ± 0.15 mm (Irf3(-/-)/Bcl2l12(-/-)); P=0.012] are strongly suppressed in Irf3(-/-)/Bcl2l12(-/-) mice, whereas hypertrophy still develops. Further, we provide evidence for the activation of IRF3 by ANG II signaling in mouse cardiac fibroblasts. Unlike the activation of IRF3 by innate immune receptors, IRF3 activation by ANG II is unique in that it is activated through the canonical ERK signaling pathway. Thus, our present study reveals a hitherto unrecognized function of IRF3 in cardiac remodeling, providing new insight into the progression of hypertension-induced cardiac pathogenesis.

          Related collections

          Author and article information

          Journal
          FASEB J.
          FASEB journal : official publication of the Federation of American Societies for Experimental Biology
          FASEB
          1530-6860
          0892-6638
          May 2011
          : 25
          : 5
          Affiliations
          [1 ] Department of Immunology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
          Article
          fj.10-174615
          10.1096/fj.10-174615
          21266535

          Comments

          Comment on this article