51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl 4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl 4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis.

          Abstract

          Liver fibrosis is a pathogenic driver of many liver diseases, so understanding its regulation might open the door to new therapies. Here the authors perform a screen for miRNA candidates and identify that miR-378 inhibits liver fibrosis in mice by interfering with Hedgehog signalling in hepatic stellate cells.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Liver fibrosis.

          Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation. Our knowledge of the cellular and molecular mechanisms of liver fibrosis has greatly advanced. Activated hepatic stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines such as TGF-beta1, angiotensin II, and leptin. Reversibility of advanced liver fibrosis in patients has been recently documented, which has stimulated researchers to develop antifibrotic drugs. Emerging antifibrotic therapies are aimed at inhibiting the accumulation of fibrogenic cells and/or preventing the deposition of extracellular matrix proteins. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans is unknown. This review summarizes recent progress in the study of the pathogenesis and diagnosis of liver fibrosis and discusses current antifibrotic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA biogenesis: coordinated cropping and dicing.

            V Kim (2005)
            The recent discovery of microRNAs (miRNAs) took many by surprise because of their unorthodox features and widespread functions. These tiny, approximately 22-nucleotide, RNAs control several pathways including developmental timing, haematopoiesis, organogenesis, apoptosis, cell proliferation and possibly even tumorigenesis. Among the most pressing questions regarding this unusual class of regulatory miRNA-encoding genes is how miRNAs are produced in cells and how the genes themselves are controlled by various regulatory networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diversifying microRNA sequence and function.

              MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                22 March 2016
                2016
                : 7
                : 10993
                Affiliations
                [1 ]Department of Integrated Biological Science, College of Natural Science, Pusan National University , Pusan 46241, Korea
                [2 ]Department of Polymer Science and Engineering, College of Engineering, Pusan National University , Pusan, 46241, Korea
                [3 ]Department of Biological Sciences, College of Natural Science, Pusan National University , 63-2 Pusandaehak-ro, Kumjeong-gu, Pusan 46241, Korea
                [4 ]Department of Biomedical Engineering, College of Engineering, The University of Akron , Akron, Ohio 44685-0302, USA
                Author notes
                Article
                ncomms10993
                10.1038/ncomms10993
                4804167
                27001906
                2bd0456d-8013-41dd-8bf4-ae32474c0f23
                Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 03 October 2015
                : 09 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article