20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generalized maximum entropy approach to quasi-stationary states in long range systems

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systems with long-range interactions display a short-time relaxation towards Quasi Stationary States (QSS) whose lifetime increases with the system size. In the paradigmatic Hamiltonian Mean-field Model (HMF) out-of-equilibrium phase transitions are predicted and numerically detected which separate homogeneous (zero magnetization) and inhomogeneous (nonzero magnetization) QSS. In the former regime, the velocity distribution presents (at least) two large, symmetric, bumps, which cannot be self-consistently explained by resorting to the conventional Lynden-Bell maximum entropy approach. We propose a generalized maximum entropy scheme which accounts for the pseudo-conservation of additional charges, the even momenta of the single particle distribution. These latter are set to the asymptotic values, as estimated by direct integration of the underlying Vlasov equation, which formally holds in the thermodynamic limit. Methodologically, we operate in the framework of a generalized Gibbs ensemble, as sometimes defined in statistical quantum mechanics, which contains an infinite number of conserved charges. The agreement between theory and simulations is satisfying, both above and below the out of equilibrium transition threshold. A precedently unaccessible feature of the QSS, the multiple bumps in the velocity profile, is resolved by our new approach.

          Related collections

          Author and article information

          Journal
          10.1103/PhysRevE.93.022107
          1507.05166

          Condensed matter
          Condensed matter

          Comments

          Comment on this article