18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tdrd5-deficient mice develop a functional haploid genome despite spermiogenesis arrest at the round spermatid stage.

          Abstract

          The Tudor domain–containing proteins (TDRDs) are an evolutionarily conserved family of proteins involved in germ cell development. We show here that in mice, TDRD5 is a novel component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Tdrd5-deficient males are sterile because of spermiogenic arrest at the round spermatid stage, with occasional failure in meiotic prophase. Without TDRD5, IMCs and CBs are disorganized, with mislocalization of their key components, including TDRD1/6/7/9 and MIWI/MILI/MIWI2. In addition, Tdrd5-deficient germ cells fail to repress LINE-1 retrotransposons with DNA-demethylated promoters. Cyclic adenosine monophosphate response element modulator (CREM) and TRF2, key transcription factors for spermiogenesis, are expressed in Tdrd5-deficient round spermatids, but their targets, including Prm1/ Prm2/ Tnp1, are severely down-regulated, which indicates the importance of IMC/CB-mediated regulation for postmeiotic gene expression. Strikingly, Tdrd5-deficient round spermatids injected into oocytes contribute to fertile offspring, demonstrating that acquisition of a functional haploid genome may be uncoupled from TDRD5 function.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline.

          Small RNAs associate with Argonaute proteins and serve as sequence-specific guides for regulation of mRNA stability, productive translation, chromatin organization, and genome structure. In animals, the Argonaute superfamily segregates into two clades. The Argonaute clade acts in RNAi and in microRNA-mediated gene regulation in partnership with 21-22 nt RNAs. The Piwi clade, and their 26-30 nt piRNA partners, have yet to be assigned definitive functions. In mice, two Piwi-family members have been demonstrated to have essential roles in spermatogenesis. Here, we examine the effects of disrupting the gene encoding the third family member, MIWI2. Miwi2-deficient mice display a meiotic-progression defect in early prophase of meiosis I and a marked and progressive loss of germ cells with age. These phenotypes may be linked to an inappropriate activation of transposable elements detected in Miwi2 mutants. Our observations suggest a conserved function for Piwi-clade proteins in the control of transposons in the germline.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel class of small RNAs in mouse spermatogenic cells.

            Small noncoding RNAs, including small interfering RNAs (siRNAs) and micro RNAs (miRNAs) of approximately 21 nucleotides (nt) in length, have emerged as potent regulators of gene expression at both transcriptional and post-transcriptional levels in diverse organisms. Here we report the identification of a novel class of small RNAs in the mouse male germline termed piwi-interacting RNAs (piRNAs). piRNAs are approximately 30 nt in length. They are expressed during spermatogenesis, mostly in spermatids. piRNAs are associated with MIWI, a spermatogenesis-specific PIWI subfamily member of the Argonaute protein family, and depend on MIWI for their biogenesis and/or stability. Furthermore, a subpopulation of piRNAs are associated with polysomes, suggesting their potential role in translational regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes.

              Silencing of transposable elements occurs during fetal gametogenesis in males via de novo DNA methylation of their regulatory regions. The loss of MILI (miwi-like) and MIWI2 (mouse piwi 2), two mouse homologs of Drosophila Piwi, activates retrotransposon gene expression by impairing DNA methylation in the regulatory regions of the retrotransposons. However, as it is unclear whether the defective DNA methylation in the mutants is due to the impairment of de novo DNA methylation, we analyze DNA methylation and Piwi-interacting small RNA (piRNA) expression in wild-type, MILI-null, and MIWI2-null male fetal germ cells. We reveal that defective DNA methylation of the regulatory regions of the Line-1 (long interspersed nuclear elements) and IAP (intracisternal A particle) retrotransposons in the MILI-null and MIWI2-null male germ cells takes place at the level of de novo methylation. Comprehensive analysis shows that the piRNAs of fetal germ cells are distinct from those previously identified in neonatal and adult germ cells. The expression of piRNAs is reduced under MILI- and MIWI2-null conditions in fetal germ cells, although the extent of the reduction differs significantly between the two mutants. Our data strongly suggest that MILI and MIWI2 play essential roles in establishing de novo DNA methylation of retrotransposons in fetal male germ cells.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                7 March 2011
                : 192
                : 5
                : 781-795
                Affiliations
                [1 ]Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
                [2 ]Laboratory for Mammalian Germ Cell Biology , [3 ]Laboratory for Genome Reprogramming , and [4 ]Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
                [5 ]Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
                [6 ]Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology, Sakyo-ku, Kyoto 606-8501, Japan
                Author notes
                Correspondence to Mitinori Saitou: saitou@ 123456anat2.med.kyoto-u.ac.jp
                Article
                201009043
                10.1083/jcb.201009043
                3051809
                21383078
                2be3a80c-f5e9-485e-803f-01e7b3d5af21
                © 2011 Yabuta et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 8 September 2010
                : 7 February 2011
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article