12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale

      Preprint
      , , ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is described by King's \(\beta\)-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of \(\mu \)eV, while the scattering length has values in the range of \(10^{-7}\) fm.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dark Matter and Background Light

          Progress in observational cosmology over the past five years has established that the Universe is dominated dynamically by dark matter and dark energy. Both these new and apparently independent forms of matter-energy have properties that are inconsistent with anything in the existing standard model of particle physics, and it appears that the latter must be extended. We review what is known about dark matter and energy from their impact on the light of the night sky. Most of the candidates that have been proposed so far are not perfectly black, but decay into or otherwise interact with photons in characteristic ways that can be accurately modelled and compared with observational data. We show how experimental limits on the intensity of cosmic background radiation in the microwave, infrared, optical, ultraviolet, x-ray and gamma-ray bands put strong limits on decaying vacuum energy, light axions, neutrinos, unstable weakly-interacting massive particles (WIMPs) and objects like black holes. Our conclusion is that the dark matter is most likely to be WIMPs if conventional cosmology holds; or higher-dimensional sources if spacetime needs to be extended.

            Author and article information

            Journal
            2015-10-21
            Article
            1510.06275
            2bf0cdea-263e-476c-9d8c-d0fbb8e7b5d4

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            JCAP 11 (2015) 027
            42 pages, 10 figures, accepted for publication in JCAP
            gr-qc astro-ph.CO hep-th

            Cosmology & Extragalactic astrophysics,General relativity & Quantum cosmology,High energy & Particle physics

            Comments

            Comment on this article

            Related Documents Log