6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lipoxins, resolvins, protectins, maresins and nitrolipids, and their clinical implications with specific reference to cancer: part I

      Clinical Lipidology
      Future Medicine Ltd

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation.

          Excessive inflammation and tumour-necrosis factor (TNF) synthesis cause morbidity and mortality in diverse human diseases including endotoxaemia, sepsis, rheumatoid arthritis and inflammatory bowel disease. Highly conserved, endogenous mechanisms normally regulate the magnitude of innate immune responses and prevent excessive inflammation. The nervous system, through the vagus nerve, can inhibit significantly and rapidly the release of macrophage TNF, and attenuate systemic inflammatory responses. This physiological mechanism, termed the 'cholinergic anti-inflammatory pathway' has major implications in immunology and in therapeutics; however, the identity of the essential macrophage acetylcholine-mediated (cholinergic) receptor that responds to vagus nerve signals was previously unknown. Here we report that the nicotinic acetylcholine receptor alpha7 subunit is required for acetylcholine inhibition of macrophage TNF release. Electrical stimulation of the vagus nerve inhibits TNF synthesis in wild-type mice, but fails to inhibit TNF synthesis in alpha7-deficient mice. Thus, the nicotinic acetylcholine receptor alpha7 subunit is essential for inhibiting cytokine synthesis by the cholinergic anti-inflammatory pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing

            Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with ω-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array of bioactive lipid signals. Human endothelial cells with upregulated COX-2 treated with ASA converted C20:5 ω-3 to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R-HEPE. Each was used by polymorphonuclear leukocytes to generate separate classes of novel trihydroxy-containing mediators, including 5-series 15R-LX5 and 5,12,18R-triHEPE. These new compounds proved to be potent inhibitors of human polymorphonuclear leukocyte transendothelial migration and infiltration in vivo (ATL analogue > 5,12,18R-triHEPE > 18R-HEPE). Acetaminophen and indomethacin also permitted 18R-HEPE and 15R-HEPE generation with recombinant COX-2 as well as ω-5 and ω-9 oxygenations of other fatty acids that act on hematologic cells. These findings establish new transcellular routes for producing arrays of bioactive lipid mediators via COX-2–nonsteroidal antiinflammatory drug–dependent oxygenations and cell–cell interactions that impact microinflammation. The generation of these and related compounds provides a novel mechanism(s) for the therapeutic benefits of ω-3 dietary supplementation, which may be important in inflammation, neoplasia, and vascular diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              C-Reactive Protein, the Metabolic Syndrome, and Risk of Incident Cardiovascular Events: An 8-Year Follow-Up of 14 719 Initially Healthy American Women

              The metabolic syndrome describes a high-risk population having 3 or more of the following clinical characteristics: upper-body obesity, hypertriglyceridemia, low HDL, hypertension, and abnormal glucose. All of these attributes, however, are associated with increased levels of C-reactive protein (CRP). We evaluated interrelationships between CRP, the metabolic syndrome, and incident cardiovascular events among 14 719 apparently healthy women who were followed up for an 8-year period for myocardial infarction, stroke, coronary revascularization, or cardiovascular death; 24% of the cohort had the metabolic syndrome at study entry. At baseline, median CRP levels for those with 0, 1, 2, 3, 4, or 5 characteristics of the metabolic syndrome were 0.68, 1.09, 1.93, 3.01, 3.88, and 5.75 mg/L, respectively (P(trend) <0.0001). Over the 8-year follow-up, cardiovascular event-free survival rates based on CRP levels above or below 3.0 mg/L were similar to survival rates based on having 3 or more characteristics of the metabolic syndrome. At all levels of severity of the metabolic syndrome, however, CRP added prognostic information on subsequent risk. For example, among those with the metabolic syndrome at study entry, age-adjusted incidence rates of future cardiovascular events were 3.4 and 5.9 per 1000 person-years of exposure for those with baseline CRP levels less than or greater than 3.0 mg/L, respectively. Additive effects for CRP were also observed for those with 4 or 5 characteristics of the metabolic syndrome. The use of different definitions of the metabolic syndrome had minimal impact on these findings. These prospective data suggest that measurement of CRP adds clinically important prognostic information to the metabolic syndrome.
                Bookmark

                Author and article information

                Journal
                Clinical Lipidology
                Clinical Lipidology
                Future Medicine Ltd
                1758-4299
                August 2013
                August 2013
                : 8
                : 4
                : 437-463
                Article
                10.2217/clp.13.31
                2c005420-2de4-40f4-be45-ec036c421801
                © 2013
                History

                Comments

                Comment on this article