21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain–pituitary–gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.

          We have recently described a molecular gatekeeper of the hypothalamic-pituitary-gonadal axis with the observation that G protein-coupled receptor 54 (GPR54) is required in mice and men for the pubertal onset of pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion to occur. In the present study, we investigate the possible central mode of action of GPR54 and kisspeptin ligand. First, we show that GPR54 transcripts are colocalized with gonadotropin-releasing hormone (GnRH) neurons in the mouse hypothalamus, suggesting that kisspeptin, the GPR54 ligand, may act directly on these neurons. Next, we show that GnRH neurons seem anatomically normal in gpr54-/- mice, and that they show projections to the median eminence, which demonstrates that the hypogonadism in gpr54-/- mice is not due to an abnormal migration of GnRH neurons (as occurs with KAL1 mutations), but that it is more likely due to a lack of GnRH release or absence of GnRH neuron stimulation. We also show that levels of kisspeptin injected i.p., which stimulate robust LH and FSH release in wild-type mice, have no effect in gpr54-/- mice, and therefore that kisspeptin acts directly and uniquely by means of GPR54 signaling for this function. Finally, we demonstrate by direct measurement, that the central administration of kisspeptin intracerebroventricularly in sheep produces a dramatic release of GnRH into the cerebrospinal fluid, with a parallel rise in serum LH, demonstrating that a key action of kisspeptin on the hypothalamo-pituitary-gonadal axis occurs directly at the level of GnRH release. The localization and GnRH release effects of kisspeptin thus define GPR54 as a major control point in the reproductive axis and suggest kisspeptin to be a neurohormonal effector.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Kisspeptin Activation of Gonadotropin Releasing Hormone Neurons and Regulation of KiSS-1 mRNA in the Male Rat

            The KiSS-1 gene codes for a family of neuropeptides called kisspeptins which bind to the G-protein-coupled receptor GPR54. To assess the possible effects of kisspeptins on gonadotropin secretion, we injected kisspeptin-52 into the lateral cerebral ventricles of adult male rats and found that kisspeptin-52 increased the serum levels of luteinizing hormone (p < 0.05). To determine whether the kisspeptin-52-induced stimulation of luteinizing hormone secretion was mediated by gonadotropin-releasing hormone (GnRH), we pretreated adult male rats with a GnRH antagonist (acyline), then challenged the animals with intracerebroventricularly administered kisspeptin-52. The GnRH antagonist blocked the kisspeptin-52-induced increase in luteinizing hormone. To examine whether kisspeptins stimulate transcriptional activity in GnRH neurons, we administered kisspeptin-52 intracerebroventricularly and found by immunocytochemistry that 86% of the GnRH neurons coexpressed Fos 2 h after the kisspeptin-52 challenge, whereas fewer than 1% of the GnRH neurons expressed Fos following injection of the vehicle alone (p < 0.001). To assess whether kisspeptins can directly act on GnRH neurons, we used double-label in situ hybridization and found that 77% of the GnRH neurons coexpress GPR54 mRNA. Finally, to determine whether KiSS-1 gene expression is regulated by gonadal hormones, we measured KiSS-1 mRNA levels by single-label in situ hybridization in intact and castrated males and found significantly higher levels in the arcuate nucleus of castrates. These results demonstrate that GnRH neurons are direct targets for regulation by kisspeptins and that KiSS-1 mRNA is regulated by gonadal hormones, suggesting that KiSS-1 neurons play an important role in the feedback regulation of gonadotropin secretion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning and expression of kiss2 in the zebrafish and medaka.

              Newly discovered kisspeptin (metastin), encoded by the Kiss1/KISS1 gene, is considered as a major gatekeeper of puberty through the regulation of GnRH. In the present study, we cloned a novel kisspeptin gene (kiss2) in the zebrafish Danio rerio and the medaka Oryzias latipes, which encodes a sequence of 125 and 115 amino acids, respectively, and its core sequence (FNLNPFGLRF, F-F form) is different from the previously characterized kiss1 (YNLNSFGLRY, Y-Y form). Our in silico data mining shows kiss1 and kiss2 are highly conserved across nonmammalian vertebrate species, and we have identified two putative kisspeptins in the platypus and three forms in Xenopus. In the brain of zebrafish and medaka, in situ hybridization and laser capture microdissection coupled with real-time PCR showed kiss1 mRNA expression in the ventromedial habenula and the periventricular hypothalamic nucleus. The kiss2 mRNA expression was observed in the posterior tuberal nucleus and the periventricular hypothalamic nucleus. Quantitative real-time PCR analysis during zebrafish development showed a significant increase in zebrafish kiss1, kiss2 (P < 0.002), gnrh2, and gnrh3 (P < 0.001) mRNA levels at the start of the pubertal phase and remained high in adulthood. In sexually mature female zebrafish, Kiss2 but not Kiss1 administration significantly increased FSH-beta (2.7-fold, P < 0.05) and LH-beta (8-fold, P < 0.01) mRNA levels in the pituitary. These results suggest that the habenular Kiss1 and the hypothalamic Kiss2 are potential regulators of reproduction including puberty and that Kiss2 is the predominant regulator of gonadotropin synthesis in fish.
                Bookmark

                Author and article information

                Contributors
                URI : https://frontiersin.org/people/u/451237
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                04 April 2018
                2018
                : 9
                : 147
                Affiliations
                Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
                Author notes

                Edited by: Rosanna Chianese, Università degli Studi della Campania Luigi Vanvitelli Caserta, Italy

                Reviewed by: Juan F. Asturiano, Universitat Politècnica de València, Spain; Ishwar Parhar, Monash University Malaysia, Malaysia

                *Correspondence: Michiya Matsuyama, rinya_m@ 123456agr.kyushu-u.ac.jp

                Present address: Hirofumi Ohga, Fisheries Research Institute of Karatsu, Kyushu University, Saga, Japan; Sethu Selvaraj, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Ponneri, Tamil Nadu, India

                Specialty section: This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2018.00147
                5894438
                29670580
                2c0183ac-8421-4b1b-8b22-b89cb4f8066d
                Copyright © 2018 Ohga, Selvaraj and Matsuyama.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 December 2017
                : 19 March 2018
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 118, Pages: 15, Words: 12713
                Funding
                Funded by: Japan Society for the Promotion of Science 10.13039/501100001691
                Award ID: JAG0380113, JAG3001406, JAG5003910, JAG3658163
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                kisspeptin,puberty,brain–pituitary–gonad axis,marine teleost,perciform,aquaculture

                Comments

                Comment on this article