13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Getting harder: cobalt(III)-template synthesis of catenanes and rotaxanes.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The synthesis of catenanes and rotaxanes using the hard trivalent transition metal ion cobalt(III) as a template is reported. Tridentate dianionic pyridine-2,6-dicarboxamido ligands, each with two terminal alkene groups, coordinate Co(III) in a mutually orthogonal arrangement such that entwined or interlocked molecular architectures are produced by ring-closing olefin metathesis. Double macrocyclization of two such ligands bound to Co(III) afford a non-interlocked "figure-of-eight" complex in 42% yield, the structure determined by X-ray crystallography. Preforming one macrocycle and carrying out a single macrocyclization of the second bis-olefin with both ligands attached to the Co(III) template led to the isomeric [2]catenate in 69% yield. The mechanically interlocked structure was confirmed by X-ray crystallography of both the Co(III) catenate and the metal-free catenand. A Co(III)-template [2]rotaxane was assembled in 61% yield by macrocyclization of the bis-olefin ligand about an appropriate dianionic thread. For both catenanes and rotaxanes, removal of the metal ion via reduction under acidic conditions to the more labile Co(II) gave neutral interlocked molecules with well-defined co-conformations stabilized by intercomponent hydrogen bonding.

          Related collections

          Author and article information

          Journal
          J. Am. Chem. Soc.
          Journal of the American Chemical Society
          1520-5126
          0002-7863
          Mar 18 2009
          : 131
          : 10
          Affiliations
          [1 ] School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom. David.Leigh@ed.ac.uk
          Article
          10.1021/ja809627j
          19275264
          2c037b3e-9eb6-4a44-ba60-92c913ae197a
          History

          Comments

          Comment on this article