11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface.

          Materials and methods

          To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH). Montmorillonite/BH complex (Mt-BH) was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs]) by oil-in-oil emulsion–solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%.

          Results

          Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours, which is longer than both of the BH solution (2.5 hours) and the conventional BH microspheres (5 hours). Moreover, BMEM exhibited lower toxicity than that of BH solution as shown by the results of cytotoxicity tests, chorioallantoic membrane-trypan blue staining, and Draize rabbit eye test. In addition, both in vivo and in vitro preocular retention capacity study of BMEMs showed a prolonged retention time. The pharmacodynamics showed that BMEMs could extend the drug duration of action.

          Conclusion

          The developed BMEMs have the potential to be further applied as ocular drug delivery systems for the treatment of glaucoma.

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Solid lipid nanoparticles as a drug delivery system for peptides and proteins.

          Solid lipid particulate systems such as solid lipid nanoparticles (SLN), lipid microparticles (LM) and lipospheres have been sought as alternative carriers for therapeutic peptides, proteins and antigens. The research work developed in the area confirms that under optimised conditions they can be produced to incorporate hydrophobic or hydrophilic proteins and seem to fulfil the requirements for an optimum particulate carrier system. Proteins and antigens intended for therapeutic purposes may be incorporated or adsorbed onto SLN, and further administered by parenteral routes or by alternative routes such as oral, nasal and pulmonary. Formulation in SLN confers improved protein stability, avoids proteolytic degradation, as well as sustained release of the incorporated molecules. Important peptides such as cyclosporine A, insulin, calcitonin and somatostatin have been incorporated into solid lipid particles and are currently under investigation. Several local or systemic therapeutic applications may be foreseen, such as immunisation with protein antigens, infectious disease treatment, chronic diseases and cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs.

            This research developed a novel bioadhesive drug delivery system, poly(d,l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles, for oral delivery of paclitaxel. Paclitaxel-loaded PLGA/MMT nanoparticles were prepared by the emulsion/solvent evaporation method. MMT was incorporated in the formulation as a matrix material component, which also plays the role of a co-emulsifier in the nanoparticle preparation process. Paclitaxel-loaded PLGA/MMT nanoparticles were found to be of spherical shape with a mean size of around 310 nm and polydispersity of less than 0.150. Adding MMT component to the matrix material appears to have little influence on the particles size and the drug encapsulation efficiency. The drug release pattern was found biphasic with an initial burst followed by a slow, sustained release, which was not remarkably affected by the MMT component. Cellular uptake of the fluorescent coumarin 6-loaded PLGA/MMT nanoparticles showed that MMT enhanced the cellular uptake efficiency of the pure PLGA nanoparticles by 57-177% for Caco-2 cells and 11-55% for HT-29 cells, which was dependent on the amount of MMT and the particle concentration in incubation. Such a novel formulation is expected to possess extended residence time in the gastrointestinal (GI) tract, which promotes oral delivery of paclitaxel.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vesicular systems in ocular drug delivery: an overview.

              The main aim of pharmacotherapeutics is the attainment of effective drug concentration at the intended site of action for a sufficient period of time to elicit a response. Poor bioavailability of drugs from ocular dosage form is mainly due to the tear production, non-productive absorption, transient residence time, and impermeability of corneal epithelium. Though the topical and localized application are still an acceptable and preferred way to achieve therapeutic level of drugs used to treat ocular disorders but the primitive ophthalmic solution, suspension, and ointment dosage form are no longer sufficient to combat various ocular diseases. This article reviews the constraints with conventional ocular therapy and explores various novel approaches, in general, to improve ocular bioavailability of the drugs, advantages of vesicular approach over these and the future challenges to render the vesicular system more effective.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2018
                12 January 2018
                : 13
                : 415-428
                Affiliations
                [1 ]Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University
                [2 ]CAS Key Laboratory of Mineralogy and Metallogeny
                [3 ]Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
                [4 ]Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou
                [5 ]State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
                Author notes
                Correspondence: Dongzhi Hou, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China, Tel +86 180 2631 2508, Fax +86 20 3935 2117, Email houdongzhi406@ 123456163.com
                Article
                ijn-13-415
                10.2147/IJN.S146346
                5769559
                2c048ab5-e394-464d-8316-f79a7c512964
                © 2018 Tian et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                glaucoma,montmorillonite,controlled release,betaxolol hydrochloride,preocular retention,microspheres

                Comments

                Comment on this article