18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-328 enhances cellular motility through posttranscriptional regulation of PTPRJ in human hepatocellular carcinoma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Interaction between microRNA (miR-328) and PTPRJ (protein tyrosine phosphatase, receptor type, J) has been reported to be responsible for miR-328-dependent increase in epithelial cancer cell proliferation. However, the role of miR-328 and PTPRJ in hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to investigate the clinical significance of miR-328 and/or PTPRJ expression in human HCC and determine their precise biological functions in this malignancy.

          Methods

          Expression levels of miR-328 and PTPRJ messenger RNA (mRNA) in 100 pairs of HCC and adjacent noncancerous tissues were detected using quantitative real-time reverse transcription polymerase chain reaction. The associations between miR-328 and/or PTPRJ expression and various clinicopathological features of HCC patients were further statistically assessed. Then, the functions of miR-328 and PTPRJ in migration and invasion of two human HCC cell lines were determined by transwell assays.

          Results

          miR-328 and PTPRJ mRNA expression levels were markedly upregulated and down-regulated in HCC tissues, respectively, compared to adjacent noncancerous tissues. Notably, the upregulation of miR-328 in HCC tissues was significantly correlated with the downregulation of PTPRJ mRNA in HCC tissues ( r=−0.362, P=0.01). In addition, miR-328-high and/or PTPRJ-low expression were found to be closely correlated with high Edmondson–Steiner grading (all P<0.05) and advanced tumor-node-metastasis stage (all P<0.05). Moreover, the restoration of miR-328 dramatically promoted HCC cell migration and invasion by repressing PTPRJ expression. Interestingly, the loss of PTPRJ expression could significantly attenuate the inhibitory effects of knockdown miR-328 on the migration and invasion of HCC cells.

          Conclusion

          These findings demonstrated that the dysregulation of miR-328 and PTPRJ may be associated with tumor progression of HCC patients. Functionally, miR-328 may serve as a crucial oncogene and be implicated in the motility of HCC cells at least in part by the suppression of PTPRJ.

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors.

          Very little is known regarding regulation of microRNA (miRNA) biogenesis in normal tissues, tumors, and cell lines. Here, we profiled the expression of 225 precursor and mature miRNAs using real-time PCR and compared the expression levels to determine the processing patterns. RNA from 22 different human tissues, 37 human cancer cell lines, and 16 pancreas and liver tissues/tumors was profiled. The relationship between precursor and mature miRNA expression fell into the following four categories: (1) a direct correlation exists between the precursor and mature miRNA expression in all cells/tissues studied; (2) direct correlation of the precursor and mature miRNA exists, yet the expression is restricted to specific cell lines or tissues; (3) there is detectable expression of mature miRNA in certain cells and tissues while the precursor is expressed in all or most cells/tissues; or (4) both precursor and mature miRNA are not expressed. Pearson correlation between the precursor and mature miRNA expression was closer to one for the tissues but was closer to zero for the cell lines, suggesting that processing of precursor miRNAs is reduced in cancer cell lines. By using Northern blotting, we show that many of these miRNAs (e.g., miR-31, miR-105 and miR-128a) are processed to the precursor, but in situ hybridization analysis demonstrates that these miRNA precursors are retained in the nucleus. We provide a database of the levels of precursor and mature miRNA in a variety of cell types. Our data demonstrate that a large number of miRNAs are transcribed but are not processed to the mature miRNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dysregulation of microRNA biogenesis and gene silencing in cancer.

            MicroRNAs (miRNAs) are small noncoding RNAs that suppress the abundance of partially complementary mRNAs and inhibit their translation. Each miRNA can regulate hundreds of mRNAs, sometimes strongly but often weakly, to mediate a diverse array of biological functions, including proliferation, cell signaling, differentiation, stress responses and DNA repair, cell adhesion and motility, inflammation, cell survival, senescence, and apoptosis, all intimately related to cancer initiation, treatment response, and metastasis. The expression and activity of miRNAs are spatially and temporally controlled. Global miRNA expression is reduced in many cancers. In addition, the expression and processing of cancer-related miRNAs that act as oncogenes ("oncomiRs") or tumor suppressors are often dysregulated in cancer. In this review, we summarize emerging knowledge about how miRNA biogenesis and gene silencing are altered to promote cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guide for diagnosis and treatment of hepatocellular carcinoma.

              Hepatocellular carcinoma (HCC) is ranked as the 5(th) common type of cancer worldwide and is considered as the 3(rd) common reason for cancer-related deaths. HCC often occurs on top of a cirrhotic liver. The prognosis is determined by several factors; tumour extension, alpha-fetoprotein (AFP) concentration, histologic subtype of the tumour, degree of liver dysfunction, and the patient's performance status. HCC prognosis is strongly correlated with diagnostic delay. To date, no ideal screening modality has been developed. Analysis of recent studies showed that AFP assessment lacks adequate sensitivity and specificity for effective surveillance and diagnosis. Many tumour markers have been tested in clinical trials without progressing to routine use in clinical practice. Thus, surveillance is still based on ultrasound (US) examination every 6 mo. Imaging studies for diagnosis of HCC can fall into one of two main categories: routine non-invasive studies such as US, computed tomography (CT), and magnetic resonance imaging, and more specialized invasive techniques including CT during hepatic arteriography and CT arterial portography in addition to the conventional hepatic angiography. This article provides an overview and spotlight on the different diagnostic modalities and treatment options of HCC.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2015
                28 October 2015
                : 8
                : 3159-3167
                Affiliations
                [1 ]Department of Gastroenterology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, People’s Republic of China
                [2 ]Department of Gastroenterology, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second People’s Hospital, Huai’an, Jiangsu, People’s Republic of China
                Author notes
                Correspondence: Shijie Ma, Department of Gastroenterology, Huai’an First People’s Hospital, Nanjing Medical University, 6 Beijing Road West, Huai’an, Jiangsu 223300, People’s Republic of China, Tel +86 517 8087 2126, Fax +86 517 8492 2412, Email shijiema123@ 123456126.com
                Article
                ott-8-3159
                10.2147/OTT.S93056
                4630182
                2c0c9234-3ab5-4ece-b8eb-8a8e7b0bce4c
                © 2015 Luo et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                mir-328,protein tyrosine phosphatase ptprj,hepatocellular carcinoma,cancer progression,migration,invasion

                Comments

                Comment on this article