16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteonecrosis, which is typically induced by trauma, glucocorticoid abuse, or alcoholism, is one of the most severe diseases in clinical orthopedics. Osteonecrosis often leads to joint destruction, and arthroplasty is eventually required. Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy. Bone tissue engineering based on engineered three-dimensional (3D) scaffolds with appropriate architecture and osteoconductive activity, alone or functionalized with bioactive factors, have been developed to enhance bone regeneration in osteonecrosis. In this review, we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis, including biocompatibility, degradability, porosity, and mechanical performance. In addition, we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice.

          Graphical abstract

          Highlights

          • Engineered three-dimensional scaffolds boost bone regeneration in osteonecrosis.

          • The ideal properties of three-dimensional scaffolds for osteonecrosis treatment are discussed.

          • Bioactive factors-functionalized three-dimensional scaffolds are promising bone regeneration devices for osteonecrosis management.

          • The challenges and opportunities of engineered three-dimensional scaffolds for osteonecrosis therapy are predicted.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: not found
          • Article: not found

          3D printing of polymer matrix composites: A review and prospective

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the mechanisms of biocompatibility.

            The manner in which a mutually acceptable co-existence of biomaterials and tissues is developed and sustained has been the focus of attention in biomaterials science for many years, and forms the foundation of the subject of biocompatibility. There are many ways in which materials and tissues can be brought into contact such that this co-existence may be compromised, and the search for biomaterials that are able to provide for the best performance in devices has been based upon the understanding of all the interactions within biocompatibility phenomena. Our understanding of the mechanisms of biocompatibility has been restricted whilst the focus of attention has been long-term implantable devices. In this paper, over 50 years of experience with such devices is analysed and it is shown that, in the vast majority of circumstances, the sole requirement for biocompatibility in a medical device intended for long-term contact with the tissues of the human body is that the material shall do no harm to those tissues, achieved through chemical and biological inertness. Rarely has an attempt to introduce biological activity into a biomaterial been clinically successful in these applications. This essay then turns its attention to the use of biomaterials in tissue engineering, sophisticated cell, drug and gene delivery systems and applications in biotechnology, and shows that here the need for specific and direct interactions between biomaterials and tissue components has become necessary, and with this a new paradigm for biocompatibility has emerged. It is believed that once the need for this change is recognised, so our understanding of the mechanisms of biocompatibility will markedly improve.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bone regeneration: current concepts and future directions

              Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioact Mater
                Bioact Mater
                Bioactive Materials
                KeAi Publishing
                2452-199X
                17 April 2020
                September 2020
                17 April 2020
                : 5
                : 3
                : 584-601
                Affiliations
                [a ]Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
                [b ]Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
                [c ]Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, PR China
                Author notes
                []Corresponding author. gyliu@ 123456jlu.edu.cn
                Article
                S2452-199X(20)30068-2
                10.1016/j.bioactmat.2020.04.008
                7210379
                32405574
                2c1704cb-d800-4dfb-a1f1-7d85ba07b5f6
                © 2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 26 February 2020
                : 11 April 2020
                : 11 April 2020
                Categories
                Article

                three-dimensional scaffold,functionalization,bone regeneration,bone tissue engineering,osteonecrosis therapy

                Comments

                Comment on this article