22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sea-level change is an important parameter controlling the expansion of oxygen-depleted conditions in neritic settings during oceanic anoxic events (OAEs). Despite this fundamental role, it remains on a short timescale (<1 Myr) one of the least constrained parameters for numerous OAEs. Here we present sedimentological and geochemical evidence from Morocco and East Greenland showing that a forced regression shortly precedes (ca.10 2 kyr) the major transgression associated with the Toarcian OAE. The forced regression can be correlated over distances greater than 3000 km in numerous Tethyan and Boreal basins, indicating that the relative sea-level change was driven by eustastic fluctuations. The major amplitude (>50 m) and short duration of the forced regression suggests that it was most likely related to the transient waxing and waning of polar ice sheet. We suggest that this short-lived glaciation might have a genetic link with the inception of the Toarcian OAE. Indeed, during the deglaciation and the accompanying sea-level rise, the thawing permafrost may have released important quantities of methane into the atmosphere that would have contributed to the Toarcian OAE rapid warming and its characteristic negative carbon isotope excursion. This study offers a hypothesis on how some hyperthermal events might be rooted in short-lived “cold-snap” episodes.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: not found
          • Article: not found

          Geochemistry of oceanic anoxic events

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event

            In the Jurassic period, the Early Toarcian oceanic anoxic event (about 183 million years ago) is associated with exceptionally high rates of organic-carbon burial, high palaeotemperatures and significant mass extinction. Heavy carbon-isotope compositions in rocks and fossils of this age have been linked to the global burial of organic carbon, which is isotopically light. In contrast, examples of light carbon-isotope values from marine organic matter of Early Toarcian age have been explained principally in terms of localized upwelling of bottom water enriched in 12C versus 13C (refs 1,2,5,6). Here, however, we report carbon-isotope analyses of fossil wood which demonstrate that isotopically light carbon dominated all the upper oceanic, biospheric and atmospheric carbon reservoirs, and that this occurred despite the enhanced burial of organic carbon. We propose that--as has been suggested for the Late Palaeocene thermal maximum, some 55 million years ago--the observed patterns were produced by voluminous and extremely rapid release of methane from gas hydrate contained in marine continental-margin sediments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals.

              The marine sedimentary record exhibits evidence for episodes of enhanced organic carbon burial known as 'oceanic anoxic events' (OAEs). They are characterized by carbon-isotope excursions in marine and terrestrial reservoirs and mass extinction of marine faunas. Causal mechanisms for the enhancement of organic carbon burial during OAEs are still debated, but it is thought that such events should draw down significant quantities of atmospheric carbon dioxide. In the case of the Toarcian OAE (approximately 183 million years ago), a short-lived negative carbon-isotope excursion in oceanic and terrestrial reservoirs has been interpreted to indicate raised atmospheric carbon dioxide caused by oxidation of methane catastrophically released from either marine gas hydrates or magma-intruded organic-rich rocks. Here we test these two leading hypotheses for a negative carbon isotopic excursion marking the initiation of the Toarcian OAE using a high-resolution atmospheric carbon dioxide record obtained from fossil leaf stomatal frequency. We find that coincident with the negative carbon-isotope excursion carbon dioxide is first drawn down by 350 +/- 100 p.p.m.v. and then abruptly elevated by 1,200 +/- 400 p.p.m.v, and infer a global cooling and greenhouse warming of 2.5 +/- 0.1 degrees C and 6.5 +/- 1 degrees C, respectively. The pattern and magnitude of carbon dioxide change are difficult to reconcile with catastrophic input of isotopically light methane from hydrates as the cause of the negative isotopic signal. Our carbon dioxide record better supports a magma-intrusion hypothesis, and suggests that injection of isotopically light carbon from the release of thermogenic methane occurred owing to the intrusion of Gondwana coals by Toarcian-aged Karoo-Ferrar dolerites.
                Bookmark

                Author and article information

                Contributors
                fkrencker@geo.au.dk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 August 2019
                29 August 2019
                2019
                : 9
                : 12518
                Affiliations
                [1 ]ISNI 0000 0001 1956 2722, GRID grid.7048.b, Department of Geoscience, , Aarhus University, ; Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark
                [2 ]GEUS–Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
                Author information
                http://orcid.org/0000-0002-6875-1092
                http://orcid.org/0000-0001-8278-1055
                Article
                48956
                10.1038/s41598-019-48956-x
                6715628
                31467345
                2c1eacf0-f572-40f2-b8f8-6cd6c7cd4656
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 March 2017
                : 13 August 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                palaeoclimate,sedimentology
                Uncategorized
                palaeoclimate, sedimentology

                Comments

                Comment on this article