10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipidomics in vascular health: current perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identifying the mechanisms that convert a healthy vascular wall to an atherosclerotic wall is of major importance since the consequences may lead to a shortened lifespan. Classical risk factors (age, smoking, obesity, diabetes mellitus, hypertension, and dyslipidemia) may result in the progression of atherosclerotic lesions by processes including inflammation and lipid accumulation. Thus, the evaluation of blood lipids and the full lipid complement produced by cells, organisms, or tissues (lipidomics) is an issue of importance. In this review, we shall describe the recent progress in vascular health research using lipidomic advances. We will begin with an overview of vascular wall biology and lipids, followed by a short analysis of lipidomics. Finally, we shall focus on the clinical implications of lipidomics and studies that have examined lipidomic approaches and vascular health.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples.

          Lipidomics, after genomics and proteomics, is a newly and rapidly expanding research field that studies cellular lipidomes and the organizational hierarchy of lipid and protein constituents mediating life processes. Lipidomics is greatly facilitated by recent advances in, and novel applications of, electrospray ionization mass spectrometry (ESI/MS). In this review, we will focus on the advances in ESI/MS, which have facilitated the development of shotgun lipidomics and the utility of intrasource separation as an enabling strategy for utilization of 2D mass spectrometry in shotgun lipidomics of biological samples. The principles and experimental details of the intrasource separation approach will be extensively discussed. Other ESI/MS approaches towards the quantitative analyses of global cellular lipidomes directly from crude lipid extracts of biological samples will also be reviewed and compared. Multiple examples of lipidomic analyses from crude lipid extracts employing these approaches will be given to show the power of ESI/MS techniques in lipidomics. Currently, modern society is plagued by the sequelae of lipid-related diseases. It is our hope that the integration of these advances in multiple disciplines will catalyze the development of lipidomics, and such development will lead to improvements in diagnostics and therapeutics, which will ultimately result in the extended longevity and an improved quality of life for humankind.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Molecular Mechanisms of Cellular Cholesterol Efflux*

            Most types of cells in the body do not express the capability of catabolizing cholesterol, so cholesterol efflux is essential for homeostasis. For instance, macrophages possess four pathways for exporting free (unesterified) cholesterol to extracellular high density lipoprotein (HDL). The passive processes include simple diffusion via the aqueous phase and facilitated diffusion mediated by scavenger receptor class B, type 1 (SR-BI). Active pathways are mediated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, which are membrane lipid translocases. The efflux of cellular phospholipid and free cholesterol to apolipoprotein A-I promoted by ABCA1 is essential for HDL biogenesis. Current understanding of the molecular mechanisms involved in these four efflux pathways is presented in this minireview.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks

              Now that complete genome sequences are available for a variety of organisms, the elucidation of gene functions involved in metabolism necessarily includes a better understanding of cellular responses upon mutations on all levels of gene products, mRNA, proteins, and metabolites. Such progress is essential since the observable properties of organisms – the phenotypes – are produced by the genotype in juxtaposition with the environment. Whereas much has been done to make mRNA and protein profiling possible, considerably less effort has been put into profiling the end products of gene expression, metabolites. To date, analytical approaches have been aimed primarily at the accurate quantification of a number of pre-defined target metabolites, or at producing fingerprints of metabolic changes without individually determining metabolite identities. Neither of these approaches allows the formation of an in-depth understanding of the biochemical behaviour within metabolic networks. Yet, by carefully choosing protocols for sample preparation and analytical techniques, a number of chemically different classes of compounds can be quantified simultaneously to enable such understanding. In this review, the terms describing various metabolite-oriented approaches are given, and the differences among these approaches are outlined. Metabolite target analysis, metabolite profiling, metabolomics, and metabolic fingerprinting are considered. For each approach, a number of examples are given, and potential applications are discussed.
                Bookmark

                Author and article information

                Journal
                Vasc Health Risk Manag
                Vasc Health Risk Manag
                Vascular Health and Risk Management
                Vascular Health and Risk Management
                Dove Medical Press
                1176-6344
                1178-2048
                2015
                12 June 2015
                : 11
                : 333-342
                Affiliations
                [1 ]Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
                [2 ]Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
                Author notes
                Correspondence: Genovefa Kolovou, Cardiology Department, Onassis Cardiac Surgery Center, 356 Sygrou Avenue, 176 74 Athens, Greece, Tel +30 21 0949 3520, Fax +30 21 0949 3336, Email genovefa@ 123456kolovou.com
                Article
                vhrm-11-333
                10.2147/VHRM.S54874
                4472029
                26109865
                2c2548d5-ae9c-40b6-b6b1-c63d91951e1f
                © 2015 Kolovou et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Cardiovascular Medicine
                lipidomics,lipids,vascular,atherosclerosis,mass spectrometry
                Cardiovascular Medicine
                lipidomics, lipids, vascular, atherosclerosis, mass spectrometry

                Comments

                Comment on this article