25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Accelerometer-assessed Physical Activity in Epidemiology : Are Monitors Equivalent?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accelerometers are increasingly being used to assess physical activity in large-scale surveys. Establishing whether key physical activity outcomes can be considered equivalent between three widely used accelerometer brands would be a significant step toward capitalizing on the increasing availability of accelerometry data for epidemiological research.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Validity of consumer-based physical activity monitors.

          Many consumer-based monitors are marketed to provide personal information on the levels of physical activity and daily energy expenditure (EE), but little or no information is available to substantiate their validity. This study aimed to examine the validity of EE estimates from a variety of consumer-based, physical activity monitors under free-living conditions. Sixty (26.4 ± 5.7 yr) healthy males (n = 30) and females (n = 30) wore eight different types of activity monitors simultaneously while completing a 69-min protocol. The monitors included the BodyMedia FIT armband worn on the left arm, the DirectLife monitor around the neck, the Fitbit One, the Fitbit Zip, and the ActiGraph worn on the belt, as well as the Jawbone Up and Basis B1 Band monitor on the wrist. The validity of the EE estimates from each monitor was evaluated relative to criterion values concurrently obtained from a portable metabolic system (i.e., Oxycon Mobile). Differences from criterion measures were expressed as a mean absolute percent error and were evaluated using 95% equivalence testing. For overall group comparisons, the mean absolute percent error values (computed as the average absolute value of the group-level errors) were 9.3%, 10.1%, 10.4%, 12.2%, 12.6%, 12.8%, 13.0%, and 23.5% for the BodyMedia FIT, Fitbit Zip, Fitbit One, Jawbone Up, ActiGraph, DirectLife, NikeFuel Band, and Basis B1 Band, respectively. The results from the equivalence testing showed that the estimates from the BodyMedia FIT, Fitbit Zip, and NikeFuel Band (90% confidence interval = 341.1-359.4) were each within the 10% equivalence zone around the indirect calorimetry estimate. The indicators of the agreement clearly favored the BodyMedia FIT armband, but promising preliminary findings were also observed with the Fitbit Zip.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of raw acceleration sedentary thresholds in children and adults.

            The aim was to develop sedentary (sitting/lying) thresholds from hip and wrist worn raw tri-axial acceleration data from the ActiGraph and GENEActiv, and to examine the agreement between free-living time spent below these thresholds with sedentary time estimated by the activPAL. Sixty children and adults wore an ActiGraph and GENEActiv on the hip and wrist while performing six structured activities, before wearing the monitors, in addition to an activPAL, for 24 h. Receiver operating characteristic (ROC) curves were used to determine sedentary thresholds based on activities in the laboratory. Agreement between developed sedentary thresholds during free-living and activPAL were assessed by Bland-Altman plots and by calculating sensitivity and specificity. Using laboratory data and ROC-curves showed similar classification accuracy for wrist and hip thresholds (Area under the curve = 0.84-0.92). Greatest sensitivity (97-98%) and specificity (74-78%) were observed for the wrist thresholds, with no large differences between brands. During free-living, Bland-Altman plots showed large mean individual biases and 95% limits of agreement compared with activPAL, with smallest difference for the ActiGraph wrist threshold in children (+30 min, P = 0.3). Sensitivity and specificity for the developed thresholds during free-living were low for both age groups and for wrist (Sensitivity, 68-88%, Specificity, 46-59%) and hip placements (Sensitivity, 89-97%, Specificity, 26-34%). Laboratory derived sedentary thresholds generally overestimate free-living sedentary time compared with activPAL. Wrist thresholds appear to perform better than hip thresholds for estimating free-living sedentary time in children and adults relative to activPAL, however, specificity for all the developed thresholds are low.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers.

              This study aimed to 1) explore children's compliance to wearing wrist- and hip-mounted accelerometers, 2) compare children's physical activity (PA) derived from raw accelerations of wrist and hip, and 3) examine differences in raw and counts PA measured by hip-worn accelerometry.
                Bookmark

                Author and article information

                Journal
                Medicine & Science in Sports & Exercise
                Medicine & Science in Sports & Exercise
                Ovid Technologies (Wolters Kluwer Health)
                0195-9131
                2018
                February 2018
                : 50
                : 2
                : 257-265
                Article
                10.1249/MSS.0000000000001435
                28976493
                2c2cdf03-85c3-4703-b31f-3b05c42006da
                © 2018
                History

                Comments

                Comment on this article