Romain Guilhaumou 1 , Sihem Benaboud 2 , Youssef Bennis 3 , Claire Dahyot-Fizelier 4 , Eric Dailly 5 , Peggy Gandia 6 , Sylvain Goutelle 7 , Sandrine Lefeuvre 8 , Nicolas Mongardon 9 , Claire Roger 10 , Julien Scala-Bertola 11 , Florian Lemaitre 12 , Marc Garnier , 13
29 March 2019
Beta-lactam antibiotics, Pharmacokinetics, Pharmacodynamics, Continuous infusion, Dosage, Therapeutic drug monitoring
Beta-lactam antibiotics (βLA) are the most commonly used antibiotics in the intensive care unit (ICU). ICU patients present many pathophysiological features that cause pharmacokinetic (PK) and pharmacodynamic (PD) specificities, leading to the risk of underdosage. The French Society of Pharmacology and Therapeutics (SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (SFAR) have joined forces to provide guidelines on the optimization of beta-lactam treatment in ICU patients.
A consensus committee of 18 experts from the two societies had the mission of producing these guidelines. The entire process was conducted independently of any industry funding. A list of questions formulated according to the PICO model (Population, Intervention, Comparison, and Outcomes) was drawn-up by the experts. Then, two bibliographic experts analysed the literature published since January 2000 using predefined keywords according to PRISMA recommendations. The quality of the data identified from the literature was assessed using the GRADE® methodology. Due to the lack of powerful studies having used mortality as main judgement criteria, it was decided, before drafting the recommendations, to formulate only “optional” recommendations.
After two rounds of rating and one amendment, a strong agreement was reached by the SFPT-SFAR guideline panel for 21 optional recommendations and a recapitulative algorithm for care covering four areas: (i) pharmacokinetic variability, (ii) PK-PD relationship, (iii) administration modalities, and (iv) therapeutic drug monitoring (TDM). The most important recommendations regarding βLA administration in ICU patients concerned (i) the consideration of the many sources of PK variability in this population; (ii) the definition of free plasma concentration between four and eight times the Minimal Inhibitory Concentration (MIC) of the causative bacteria for 100% of the dosing interval as PK-PD target to maximize bacteriological and clinical responses; (iii) the use of continuous or prolonged administration of βLA in the most severe patients, in case of high MIC bacteria and in case of lower respiratory tract infection to improve clinical cure; and (iv) the use of TDM to improve PK-PD target achievement.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.