26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Likelihood analysis of the minimal AMSB model

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We perform a likelihood analysis of the minimal anomaly-mediated supersymmetry-breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that either a wino-like or a Higgsino-like neutralino LSP, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\chi }^0_{1}$$\end{document} , may provide the cold dark matter (DM), both with similar likelihoods. The upper limit on the DM density from Planck and other experiments enforces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\tilde{\chi }^0_{1}} \lesssim 3 \,\, \mathrm {TeV}$$\end{document} after the inclusion of Sommerfeld enhancement in its annihilations. If most of the cold DM density is provided by the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\chi }^0_{1}$$\end{document} , the measured value of the Higgs mass favours a limited range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan \beta \sim 5$$\end{document} (and also for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan \beta \sim 45$$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu > 0$$\end{document} ) but the scalar mass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0$$\end{document} is poorly constrained. In the wino-LSP case, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{3/2}$$\end{document} is constrained to about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$900\,\, \mathrm {TeV}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\tilde{\chi }^0_{1}}$$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.9\pm 0.1\,\, \mathrm {TeV}$$\end{document} , whereas in the Higgsino-LSP case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{3/2}$$\end{document} has just a lower limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gtrsim 650\,\, \mathrm {TeV}$$\end{document} ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gtrsim 480\,\, \mathrm {TeV}$$\end{document} ) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\tilde{\chi }^0_{1}}$$\end{document} is constrained to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.12 ~(1.13) \pm 0.02\,\, \mathrm {TeV}$$\end{document} in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document} ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <0$$\end{document} ) scenario. In neither case can the anomalous magnetic moment of the muon, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)_\mu $$\end{document} , be improved significantly relative to its Standard Model (SM) value, nor do flavour measurements constrain the model significantly, and there are poor prospects for discovering supersymmetric particles at the LHC, though there are some prospects for direct DM detection. On the other hand, if the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\chi }^0_{1}$$\end{document} contributes only a fraction of the cold DM density, future LHC -based searches for gluinos, squarks and heavier chargino and neutralino states as well as disappearing track searches in the wino-like LSP region will be relevant, and interference effects enable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BR}(B_{s, d} \rightarrow \mu ^+\mu ^-)$$\end{document} to agree with the data better than in the SM in the case of wino-like DM with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu > 0$$\end{document} .

          Related collections

          Most cited references124

          • Record: found
          • Abstract: not found
          • Article: not found

          Über die Beugung und Bremsung der Elektronen

            • Record: found
            • Abstract: not found
            • Article: not found

            Sigma-term update

              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics

              We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focussing on the extension of the vanilla \(\Lambda\)CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software, which is fully parallelized using MPI and includes an interface to CosmoMC, is available at http://www.mrao.cam.ac.uk/software/multinest/. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at http://www.superbayes.org

                Author and article information

                Contributors
                martino.borsato@cern.ch
                Journal
                Eur Phys J C Part Fields
                Eur Phys J C Part Fields
                The European Physical Journal. C, Particles and Fields
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1434-6044
                1434-6052
                27 April 2017
                27 April 2017
                2017
                : 77
                : 4
                : 268
                Affiliations
                [1 ]ISNI 0000 0004 0492 0453, GRID grid.7683.a, , DESY, ; Notkestraße 85, 22607 Hamburg, Germany
                [2 ]ISNI 0000000109410645, GRID grid.11794.3a, , Universidade de Santiago de Compostela, ; 15706 Santiago de Compostela, Spain
                [3 ]ISNI 0000 0000 8700 0572, GRID grid.8250.f, Science Laboratories, Department of Physics, , Institute for Particle Physics Phenomenology, University of Durham, ; South Road, Durham, DH1 3LE UK
                [4 ]ISNI 0000 0004 1937 1290, GRID grid.12847.38, Faculty of Physics, Institute of Theoretical Physics, , University of Warsaw, ; ul. Pasteura 5, 02-093 Warsaw, Poland
                [5 ]ISNI 0000 0001 2113 8111, GRID grid.7445.2, High Energy Physics Group, Blackett Laboratory, , Imperial College, ; Prince Consort Road, London, SW7 2AZ UK
                [6 ]ISNI 0000 0001 0675 0679, GRID grid.417851.e, , Fermi National Accelerator Laboratory, ; P.O. Box 500, Batavia, IL 60510 USA
                [7 ]ISNI 0000 0001 2175 0319, GRID grid.185648.6, Physics Department, , University of Illinois at Chicago, ; Chicago, IL 60607-7059 USA
                [8 ]ISNI 0000 0001 2156 142X, GRID grid.9132.9, , Experimental Physics Department, CERN, ; 1211 Geneva 23, Switzerland
                [9 ]ISNI 0000 0001 0790 3681, GRID grid.5284.b, , Antwerp University, ; 2610 Wilrijk, Belgium
                [10 ]ISNI 0000 0001 2179 088X, GRID grid.1008.9, ARC Centre of Excellence for Particle Physics at the Terascale, , School of Physics, University of Melbourne, ; Melbourne, 3010 Australia
                [11 ]ISNI 0000 0001 2322 6764, GRID grid.13097.3c, Theoretical Particle Physics and Cosmology Group, Department of Physics, , King’s College London, ; London, WC2R 2LS UK
                [12 ]ISNI 0000 0001 2156 142X, GRID grid.9132.9, Theoretical Physics Department, , CERN, ; 1211 Geneva 23, Switzerland
                [13 ]ISNI 0000 0004 1936 7603, GRID grid.5337.2, H.H. Wills Physics Laboratory, , University of Bristol, ; Tyndall Avenue, Bristol, BS8 1TL UK
                [14 ]ISNI 0000000119578126, GRID grid.5515.4, , Campus of International Excellence UAM+CSIC, ; Cantoblanco, 28049 Madrid, Spain
                [15 ]ISNI 0000000119578126, GRID grid.5515.4, , Instituto de Física Teórica UAM-CSIC, ; C/ Nicolas Cabrera 13-15, 28049 Madrid, Spain
                [16 ]ISNI 0000 0004 1757 2371, GRID grid.469953.4, , Instituto de Física de Cantabria (CSIC-UC), ; Avda. de Los Castros s/n, 39005 Cantabria, Spain
                [17 ]ISNI 0000 0004 1937 0650, GRID grid.7400.3, , Physik-Institut, Universität Zürich, ; 8057 Zurich, Switzerland
                [18 ]ISNI 0000 0001 2151 536X, GRID grid.26999.3d, , Kavli IPMU (WPI), UTIAS, The University of Tokyo, ; Kashiwa, Chiba 277-8583 Japan
                [19 ]ISNI 0000000419368657, GRID grid.17635.36, William I. Fine Theoretical Physics Institute, , School of Physics and Astronomy, University of Minnesota, ; Minneapolis, MN 55455 USA
                Author information
                http://orcid.org/0000-0001-5760-2924
                Article
                4810
                10.1140/epjc/s10052-017-4810-0
                5409153
                2c37f20b-b79a-4b2f-b5de-ca515fa03c36
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                Funded by SCOAP 3

                History
                : 21 December 2016
                : 5 April 2017
                Funding
                Funded by: FundRef 10.13039/100000001, National Science Foundation;
                Award ID: PHY-1151640
                Funded by: STFC
                Award ID: IPPP grant
                Funded by: Spanish MICINN’s Consolider-Ingenio 2010 Program
                Award ID: MultiDark CSD2009-00064
                Funded by: STFC (UK)
                Award ID: ST/L000326/1
                Funded by: FundRef 10.13039/501100000923, Australian Research Council;
                Funded by: World Premier International Research Center Initiative (WPI), MEXT, Japan
                Funded by: FundRef 10.13039/100010663, H2020 European Research Council;
                Award ID: Grant BSMFLEET 639068
                Funded by: European Commission “HiggsTools” Initial Training Network
                Award ID: PITN- GA-2012-316704
                Funded by: Collaborative Research Center SFB676 of the DFG, “Particles, Strings and the early Universe”
                Funded by: FundRef 10.13039/501100004281, Narodowe Centrum Nauki;
                Award ID: DEC- 2015/18/M/ST2/00054
                Award ID: DEC-2014/15/B/ST2/02157
                Funded by: Fermi Research Alliance, LLC
                Award ID: De-AC02-07CH11359
                Funded by: FundRef 10.13039/100000015, U.S. Department of Energy;
                Award ID: DE-SC0011842
                Funded by: FundRef 10.13039/501100007273, Comisión Interministerial de Ciencia y Tecnología;
                Award ID: FPA 2013-40715-P
                Categories
                Regular Article - Theoretical Physics
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article

                Related Documents Log