20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ON-OFF Interactions in the Retina: Role of Glycine and GABA

      research-article
      *
      Current Neuropharmacology
      Bentham Science Publishers
      Bipolar cells, electroretinogram, GABA, ganglion cells, glycine, ON-OFF interactions, retina

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells and it apparently remains as signals propagate to higher brain visual centers. A fundamental question in visual neuroscience is how these two parallel pathways function: are they independent from each other or do they interact somehow? In the latter case, what kinds of mechanisms are involved and what are the consequences from this cross-talk? This review summarizes current knowledge about the types of interactions between the ON and OFF channels in nonmammalian and mammalian retina. Data concerning the ON-OFF interactions in distal retina revealed by recording of single bipolar cell activity and electroretinographic ON (b-wave) and OFF (d-wave) responses are presented. Special emphasis is put on the ON-OFF interactions in proximal retina and their dependence on the state of light adaptation in mammalian retina. The involvement of the GABAergic and glycinergic systems in the ON-OFF crosstalk is also discussed.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research.

          Information processing in the vertebrate retina occurs in two separate channels known as ON and OFF channels. When intracellular electrophysiological recordings were obtained from the perfused retina-eyecup preparation of the mud-puppy (Necturus maculosus), the addition of 2-amino-4-phosphonobutyric acid to the bathing medium blocked all responses in the ON channel but left intact the OFF responses including OFF ganglion cell discharge. 2-Amino-4-phosphonobutyric acid blocks the light response of the ON bipolar cell by mimicking the endogenous photoreceptor transmitter.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            B-wave of the electroretinogram. A reflection of ON bipolar cell activity

            Light-evoked intraretinal field potentials (electroretinogram, ERG) have been measured simultaneously with extracellular potassium fluxes in the amphibian retina. The application of highly selective pharmacologic agents permitted us to functionally isolate various classes of retinal neurons. It was found that: (a) application of APB (2-amino-4-phosphonobutyrate), which has previously been shown to selectively abolish the light responsiveness of ON bipolar cells, causes a concomitant loss of the ERG b-wave and ON potassium flux. (b) Conversely, PDA (cis 2,3-piperidine-dicarboxylic acid) or KYN (kynurenic acid), which have been reported to suppress the light responses of OFF bipolar, horizontal, and third-order retinal neurons, causes a loss of the ERG d-wave as well as OFF potassium fluxes. The b- wave and ON potassium fluxes, however, remain undiminished. (c) NMA (N- methyl-DL-aspartate) or GLY (glycine), which have been reported to suppress the responses of third-order neurons, do not diminish the b- or d-waves, nor the potassium fluxes at ON or OFF. This leads to the conclusion that the b-wave of the ERG is a result of the light-evoked depolarization of the ON bipolar neurons. This experimental approach has resulted in two further conclusions: (a) that the d-wave is an expression of OFF bipolar and/or horizontal cell depolarization at the termination of illumination and (b) that light-induced increases in extracellular potassium concentration in both the inner (proximal) and outer (distal) retina are the result of ON bipolar cell depolarization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness.

              During development, visual photoreceptors, bipolar cells and other neurons establish connections within the retina enabling the eye to process visual images over approximately 7 log units of illumination. Within the retina, cells that respond to light increment and light decrement are separated into ON- and OFF-pathways. Hereditary diseases are known to disturb these retinal pathways, causing either progressive degeneration or stationary deficits. Congenital stationary night blindness (CSNB) is a group of stable retinal disorders that are characterized by abnormal night vision. Genetic subtypes of CSNB have been defined and different disease actions have been postulated. The molecular bases have been elucidated in several subtypes, providing a better understanding of the disease mechanisms and developmental retinal neurobiology. Here we have studied 22 families with 'complete' X-linked CSNB (CSNB1; MIM 310500; ref. 4) in which affected males have night blindness, some photopic vision loss and a defect of the ON-pathway. We have found 14 different mutations, including 1 founder mutation in 7 families from the United States, in a novel candidate gene, NYX. NYX, which encodes a glycosylphosphatidyl (GPI)-anchored protein called nyctalopin, is a new and unique member of the small leucine-rich proteoglycan (SLRP) family. The role of other SLRP proteins suggests that mutant nyctalopin disrupts developing retinal interconnections involving the ON-bipolar cells, leading to the visual losses seen in patients with complete CSNB.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                December 2014
                December 2014
                : 12
                : 6
                : 509-526
                Affiliations
                Department of Physiology, Medical Phaculty, Medical University, 1431 Sofia, Country Bulgaria
                Author notes
                [* ]Address correspondence to this author at the Department of Physiology, Medical Phaculty, Medical University, 1431 Sofia, Country Bulgaria; Tel: +35929172543; Mobile: +359887480853; Fax: +35929520345; E-mail: epopova@ 123456abv.bg
                Article
                CN-12-509
                10.2174/1570159X13999150122165018
                4428025
                25977678
                2c3ea74b-c891-40dd-b312-c980d7dfc133
                © 2014 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 25 August 2014
                : 19 December 2014
                : 22 December 2014
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                bipolar cells,electroretinogram,gaba,ganglion cells,glycine,on-off interactions,retina

                Comments

                Comment on this article