29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10–producing regulatory B cells

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d846817e367">Resident microbiota activates regulatory cells that modulate intestinal inflammation and promote and maintain intestinal homeostasis. IL-10 is a key mediator of immune regulatory function. Our studies describe the functional importance and mechanisms by which gut microbiota and specific microbial components influence the development of intestinal IL-10–producing B cells. Using fecal transplant into germ-free (GF) <i>Il10 <sup>+/EGFP</sup> </i> reporter and <i>Il10 <sup>–/–</sup> </i> mice, we demonstrated that microbiota from specific pathogen–free mice primarily stimulated IL-10–producing colon-specific B cells and T regulatory 1 cells in ex-GF mice. IL-10 in turn downregulated microbiota-activated mucosal inflammatory cytokines. TLR2 and -9 ligands and enteric bacterial lysates preferentially induced IL-10 production and the regulatory capacity of intestinal B cells. Analysis of <i>Il10 <sup>+/EGFP</sup> </i> mice crossed with additional gene-deficient strains and B cell cotransfer studies demonstrated that microbiota-induced IL-10–producing intestinal B cells ameliorated chronic T cell–mediated colitis in a TLR2-, MyD88-, and PI3K-dependent fashion. In vitro studies implicated downstream signaling of PI3Kp110δ and AKT. These studies demonstrated that resident enteric bacteria activated intestinal IL-10–producing B cells through TLR2, MyD88, and PI3K pathways. These B cells reduced colonic T cell activation and maintained mucosal homeostasis in response to intestinal microbiota. </p>

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The microbiome in inflammatory bowel disease: current status and the future ahead.

          Studies of the roles of microbial communities in the development of inflammatory bowel disease (IBD) have reached an important milestone. A decade of genome-wide association studies and other genetic analyses have linked IBD with loci that implicate an aberrant immune response to the intestinal microbiota. More recently, profiling studies of the intestinal microbiome have associated the pathogenesis of IBD with characteristic shifts in the composition of the intestinal microbiota, reinforcing the view that IBD results from altered interactions between intestinal microbes and the mucosal immune system. Enhanced technologies can increase our understanding of the interactions between the host and its resident microbiota and their respective roles in IBD from both a large-scale pathway view and at the metabolic level. We review important microbiome studies of patients with IBD and describe what we have learned about the mechanisms of intestinal microbiota dysfunction. We describe the recent progress in microbiome research from exploratory 16S-based studies, reporting associations of specific organisms with a disease, to more recent studies that have taken a more nuanced view, addressing the function of the microbiota by metagenomic and metabolomic methods. Finally, we propose study designs and methodologies for future investigations of the microbiome in patients with inflammatory gut and autoimmune diseases in general. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota.

            Mucosal surfaces constantly encounter microbes. Toll-like receptors (TLRs) mediate recognition of microbial patterns to eliminate pathogens. By contrast, we demonstrate that the prominent gut commensal Bacteroides fragilis activates the TLR pathway to establish host-microbial symbiosis. TLR2 on CD4(+) T cells is required for B. fragilis colonization of a unique mucosal niche in mice during homeostasis. A symbiosis factor (PSA, polysaccharide A) of B. fragilis signals through TLR2 directly on Foxp3(+) regulatory T cells to promote immunologic tolerance. B. fragilis lacking PSA is unable to restrain T helper 17 cell responses and is defective in niche-specific mucosal colonization. Therefore, commensal bacteria exploit the TLR pathway to actively suppress immunity. We propose that the immune system can discriminate between pathogens and the microbiota through recognition of symbiotic bacterial molecules in a process that engenders commensal colonization.
              • Record: found
              • Abstract: found
              • Article: not found

              Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches.

              Intestinal microbiota are involved in the pathogenesis of Crohn's disease, ulcerative colitis, and pouchitis. We review the mechanisms by which these gut bacteria, fungi, and viruses mediate mucosal homeostasis via their composite genes (metagenome) and metabolic products (metabolome). We explain how alterations to their profiles and functions under conditions of dysbiosis contribute to inflammation and effector immune responses that mediate inflammatory bowel diseases (IBD) in humans and enterocolitis in mice. It could be possible to engineer the intestinal environment by modifying the microbiota community structure or function to treat patients with IBD-either with individual agents, via dietary management, or as adjuncts to immunosuppressive drugs. We summarize the latest information on therapeutic use of fecal microbial transplantation and propose improved strategies to selectively normalize the dysbiotic microbiome in personalized approaches to treatment.

                Author and article information

                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                September 3 2019
                September 3 2019
                September 3 2019
                August 5 2019
                August 5 2019
                September 3 2019
                : 129
                : 9
                : 3702-3716
                Article
                10.1172/JCI93820
                6715367
                31211700
                2c45c817-febd-4a6d-882d-9314a5f54e8f
                © 2019
                History

                Comments

                Comment on this article

                Related Documents Log