84
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in immunological profile of allogeneic mesenchymal stem cells after differentiation: should we be concerned?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stem cells (MSCs) are an adult stromal cell population possessing potent differentiation capacity and a potential for use across major histocompatibility complex barriers. Although allogeneic MSCs have potent immunosuppressive properties, evidence also suggests that they elicit a weak allogeneic immune response. However, the effect of induced differentiation on the immunosuppressive ability and immunogenicity of allogeneic MSCs is a potential obstacle when applying MSCs in tissue replacement therapies. These concerns will be explored in this review, with particular emphasis on changes in the cell surface expression of immunogenic markers, changes in the secretion of immunosuppressive molecules and in vivo functional benefits of the cell therapy. We review the literature from a translational point of view, focusing on pre-clinical studies that have utilised and analysed the effects of allogeneic immune responses on the ability of allogeneic MSCs to regenerate damaged tissue in models of bone, heart and cartilage defects.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.

          Our aim was to investigate the safety and efficacy of intravenous allogeneic human mesenchymal stem cells (hMSCs) in patients with myocardial infarction (MI). Bone marrow-derived hMSCs may ameliorate consequences of MI, and have the advantages of preparation ease, allogeneic use due to immunoprivilege, capacity to home to injured tissue, and extensive pre-clinical support. We performed a double-blind, placebo-controlled, dose-ranging (0.5, 1.6, and 5 million cells/kg) safety trial of intravenous allogeneic hMSCs (Prochymal, Osiris Therapeutics, Inc., Baltimore, Maryland) in reperfused MI patients (n=53). The primary end point was incidence of treatment-emergent adverse events within 6 months. Ejection fraction and left ventricular volumes determined by echocardiography and magnetic resonance imaging were exploratory efficacy end points. Adverse event rates were similar between the hMSC-treated (5.3 per patient) and placebo-treated (7.0 per patient) groups, and renal, hepatic, and hematologic laboratory indexes were not different. Ambulatory electrocardiogram monitoring demonstrated reduced ventricular tachycardia episodes (p=0.025), and pulmonary function testing demonstrated improved forced expiratory volume in 1 s (p=0.003) in the hMSC-treated patients. Global symptom score in all patients (p=0.027) and ejection fraction in the important subset of anterior MI patients were both significantly better in hMSCs versus placebo subjects. In the cardiac magnetic resonance imaging substudy, hMSC treatment, but not placebo, increased left ventricular ejection fraction and led to reverse remodeling. Intravenous allogeneic hMSCs are safe in patients after acute MI. This trial provides pivotal safety and provisional efficacy data for an allogeneic bone marrow-derived stem cell in post-infarction patients. (Safety Study of Adult Mesenchymal Stem Cells [MSC] to Treat Acute Myocardial Infarction; NCT00114452).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone.

            Treatment with isolated allogeneic mesenchymal cells has the potential to enhance the therapeutic effects of conventional bone marrow transplantation in patients with genetic disorders affecting mesenchymal tissues, including bone, cartilage, and muscle. To demonstrate the feasibility of mesenchymal cell therapy and to gain insight into the transplant biology of these cells, we used gene-marked, donor marrow-derived mesenchymal cells to treat six children who had undergone standard bone marrow transplantation for severe osteogenesis imperfecta. Each child received two infusions of the allogeneic cells. Five of six patients showed engraftment in one or more sites, including bone, skin, and marrow stroma, and had an acceleration of growth velocity during the first 6 mo postinfusion. This improvement ranged from 60% to 94% (median, 70%) of the predicted median values for age- and sex-matched unaffected children, compared with 0% to 40% (median, 20%) over the 6 mo immediately preceding the infusions. There was no clinically significant toxicity except for an urticarial rash in one patient just after the second infusion. Failure to detect engraftment of cells expressing the neomycin phosphotransferase marker gene suggested the potential for immune attack against therapeutic cells expressing a foreign protein. Thus, allogeneic mesenchymal cells offer feasible posttransplantation therapy for osteogenesis imperfecta and likely other disorders originating in mesenchymal precursors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal stem cells and their potential as cardiac therapeutics.

              Mesenchymal stem cells (MSCs) represent a stem cell population present in adult tissues that can be isolated, expanded in culture, and characterized in vitro and in vivo. MSCs differentiate readily into chondrocytes, adipocytes, osteocytes, and they can support hematopoietic stem cells or embryonic stem cells in culture. Evidence suggests MSCs can also express phenotypic characteristics of endothelial, neural, smooth muscle, skeletal myoblasts, and cardiac myocyte cells. When introduced into the infarcted heart, MSCs prevent deleterious remodeling and improve recovery, although further understanding of MSC differentiation in the cardiac scar tissue is still needed. MSCs have been injected directly into the infarct, or they have been administered intravenously and seen to home to the site of injury. Examination of the interaction of allogeneic MSCs with cells of the immune system indicates little rejection by T cells. Persistence of allogeneic MSCs in vivo suggests their potential "off the shelf" therapeutic use for multiple recipients. Clinical use of cultured human MSCs (hMSCs) has begun for cancer patients, and recipients have received autologous or allogeneic MSCs. Research continues to support the desirable traits of MSCs for development of cellular therapeutics for many tissues, including the cardiovascular system. In summary, hMSCs isolated from adult bone marrow provide an excellent model for development of stem cell therapeutics, and their potential use in the cardiovascular system is currently under investigation in the laboratory and clinical settings.
                Bookmark

                Author and article information

                Contributors
                p.lohan2@nuigalway.ie
                cynthia.coleman@nuigalway.ie
                mary.murphy@nuigalway.ie
                matthew.griffin@nuigalway.ie
                thomas.ritter@nuigalway.ie
                aideen.ryan@nuigalway.ie
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                19 August 2014
                2014
                : 5
                : 4
                : 99
                Affiliations
                [ ]Regenerative Medicine Institute, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
                [ ]Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
                Article
                387
                10.1186/scrt488
                4282147
                25158057
                2c4a06b3-6714-414c-9232-85d04f5d7fbc
                © The Author(s) 2014

                This article is published under license to BioMed Central Ltd. The licensee has exclusive rights to distribute this article, in any medium, for 12 months following its publication. After this time, the article is available under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                Categories
                Review
                Custom metadata
                © The Author(s) 2014

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article