+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sublingual immunization with recombinant adenovirus encoding SARS-CoV spike protein induces systemic and mucosal immunity without redirection of the virus to the brain


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Sublingual (s.l.) administration of soluble protein antigens, inactivated viruses, or virus-like particles has been shown to induce broad immune responses in mucosal and extra-mucosal tissues. Recombinant replication-defective adenovirus vectors (rADVs) infect mucosa surface and therefore can serve as a mucosal antigen delivery vehicle. In this study we examined whether s.l. immunization with rADV encoding spike protein (S) (rADV-S) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) induces protective immunity against SARS-CoV and could serve as a safe mucosal route for delivery of rADV.


          Here, we show that s.l. administration of rADV-S induced serum SARS-CoV neutralizing and airway IgA antibodies in mice. These antibody responses are comparable to those induced by intranasal (i.n.) administration. In addition, s.l. immunization induced antigen-specific CD8 + T cell responses in the lungs that are superior to those induced by intramuscular immunization. Importantly, unlike i.n. administration, s.l. immunization with rADV did not redirect the rADV vector to the olfactory bulb.


          Our study indicates that s.l. immunization with rADV-S is safe and effective in induction of a broad spectrum of immune responses and presumably protection against infection with SARS-CoV.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The spike protein of SARS-CoV — a target for vaccine and therapeutic development

          Key Points This Review provides an overview on the spike (S) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) as a target for the development of vaccines and therapeutics for the prevention and treatment of SARS. SARS is a newly emerging infectious disease, caused by SARS-CoV, a novel coronavirus that caused a global outbreak of SARS. SARS-CoV S protein mediates binding of the virus with its receptor angiotensin-converting enzyme 2 and promotes the fusion between the viral and host cell membranes and virus entry into the host cell. SARS-CoV S protein induces humoral and cellular immune responses against SARS-CoV. SARS S protein is the target of new SARS vaccines. These vaccines are based on SARS-CoV full-length S protein and its receptor-binding domain, including DNA-, viral vector- and subunit-based vaccines Peptides, antibodies, organic compounds and short interfering RNAs are additional anti-SARS-CoV therapeutics that target the S protein. The work on SARS-CoV S protein-based vaccines and drugs will be useful as a model for the development of prophylactic strategies and therapies against other viruses with class I fusion proteins that can cause emerging infectious diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a preventive vaccine for Ebola virus infection in primates.

            Outbreaks of haemorrhagic fever caused by the Ebola virus are associated with high mortality rates that are a distinguishing feature of this human pathogen. The highest lethality is associated with the Zaire subtype, one of four strains identified to date. Its rapid progression allows little opportunity to develop natural immunity, and there is currently no effective anti-viral therapy. Therefore, vaccination offers a promising intervention to prevent infection and limit spread. Here we describe a highly effective vaccine strategy for Ebola virus infection in non-human primates. A combination of DNA immunization and boosting with adenoviral vectors that encode viral proteins generated cellular and humoral immunity in cynomolgus macaques. Challenge with a lethal dose of the highly pathogenic, wild-type, 1976 Mayinga strain of Ebola Zaire virus resulted in uniform infection in controls, who progressed to a moribund state and death in less than one week. In contrast, all vaccinated animals were asymptomatic for more than six months, with no detectable virus after the initial challenge. These findings demonstrate that it is possible to develop a preventive vaccine against Ebola virus infection in primates.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transient Facial Nerve Paralysis (Bell's Palsy) following Intranasal Delivery of a Genetically Detoxified Mutant of Escherichia coli Heat Labile Toxin

              Background An association was previously established between facial nerve paralysis (Bell's palsy) and intranasal administration of an inactivated influenza virosome vaccine containing an enzymatically active Escherichia coli Heat Labile Toxin (LT) adjuvant. The individual component(s) responsible for paralysis were not identified, and the vaccine was withdrawn. Methodology/Principal Findings Subjects participating in two contemporaneous non-randomized Phase 1 clinical trials of nasal subunit vaccines against Human Immunodeficiency Virus and tuberculosis, both of which employed an enzymatically inactive non-toxic mutant LT adjuvant (LTK63), underwent active follow-up for adverse events using diary-cards and clinical examination. Two healthy subjects experienced transient peripheral facial nerve palsies 44 and 60 days after passive nasal instillation of LTK63, possibly a result of retrograde axonal transport after neuronal ganglioside binding or an inflammatory immune response, but without exaggerated immune responses to LTK63. Conclusions/Significance While the unique anatomical predisposition of the facial nerve to compression suggests nasal delivery of neuronal-binding LT–derived adjuvants is inadvisable, their continued investigation as topical or mucosal adjuvants and antigens appears warranted on the basis of longstanding safety via oral, percutaneous, and other mucosal routes.

                Author and article information

                Virol J
                Virol. J
                Virology Journal
                BioMed Central
                21 September 2012
                : 9
                : 215
                [1 ]Laboratory Sciences Division, International Vaccine Institute, Seoul, 151-919, Republic of Korea
                [2 ]Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, and the Center for Agricultural Biomaterials, and Center for Food Safety and Toxicology, Seoul National University, Seoul, 151-921, Republic of Korea
                [3 ]Department of Pharmacy, College of Pharmacy, Hanyang University, Kyeonggi-do, 426-791, Republic of Korea
                [4 ]College of Pharmacy, Ewha Womans University, 11-1 Dae-Hyun Dong, Seo-Dae-Mun Gu, Seoul, 120-750, Republic of Korea
                Copyright ©2012 Shim et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 13 March 2012
                : 19 September 2012

                Microbiology & Virology
                severe acute respiratory syndrome,t cell,iga,mucosa,sublingual administration,recombinant adenovirus


                Comment on this article