163
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brassinazole resistant 1 (BZR1)-dependent brassinosteroid signalling pathway leads to ectopic activation of quiescent cell division and suppresses columella stem cell differentiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlight

          Brassinosteroids (BRs) lead to ectopic activation of quiescent centre division as well as modulation of the columella stem cells differentiation in Arabidopsis roots in a BR concentration- and BZR1-/BES1-dependent manner.

          Abstract

          Previous publications have shown that BRI1 EMS suppressor 1 (BES1), a positive regulator of the brassinosteroid (BR) signalling pathway, enhances cell divisions in the quiescent centre (QC) and stimulates columella stem cell differentiation. Here, it is demonstrated that BZR1, a BES1 homologue, also promotes cell divisions in the QC, but it suppresses columella stem cell differentiation, opposite to the action of BES1. In addition, BR and its BZR1-mediated signalling pathway are shown to alter the expression/subcellular distribution of pin-formed (PINs), which may result in changes in auxin movement. BR promotes intense nuclear accumulation of BZR1 in the root tip area, and the binding of BZR1 to the promoters of several root development-regulating genes, modulating their expression in the root stem cell niche area. These BZR1-mediated signalling cascades may account for both the ectopic activation of QC cell divisions as well as the suppression of the columella stem cell differentiation. They could also inhibit auxin-dependent distal stem cell differentiation by antagonizing the auxin/WOX5-dependent pathway. In conclusion, BZR1-/BES1-mediated BR signalling pathways show differential effects on the maintenance of root apical meristem activities: they stimulate ectopic QC division while they show opposite effects on the differentiation of distal columella stem cells in a BR concentration- and BZR1-/BES1-dependent manner.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.

          Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-specific manner. Here we show that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root. Furthermore, the joint action of these genes has an important role in pattern formation by focusing the auxin maximum and restricting the expression domain of PLETHORA (PLT) genes, major determinants for root stem cell specification. In turn, PLT genes are required for PIN gene transcription to stabilize the auxin maximum at the distal root tip. Our data reveal an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers.

            Throughout the lifespan of a plant, which in some cases can last more than one thousand years, the stem cell niches in the root and shoot apical meristems provide cells for the formation of complete root and shoot systems, respectively. Both niches are superficially different and it has remained unclear whether common regulatory mechanisms exist. Here we address whether root and shoot meristems use related factors for stem cell maintenance. In the root niche the quiescent centre cells, surrounded by the stem cells, express the homeobox gene WOX5 (WUSCHEL-RELATED HOMEOBOX 5), a homologue of the WUSCHEL (WUS) gene that non-cell-autonomously maintains stem cells in the shoot meristem. Loss of WOX5 function in the root meristem stem cell niche causes terminal differentiation in distal stem cells and, redundantly with other regulators, also provokes differentiation of the proximal meristem. Conversely, gain of WOX5 function blocks differentiation of distal stem cell descendents that normally differentiate. Importantly, both WOX5 and WUS maintain stem cells in either a root or shoot context. Together, our data indicate that stem cell maintenance signalling in both meristems employs related regulators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel sensor to map auxin response and distribution at high spatio-temporal resolution.

              Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                August 2015
                1 July 2015
                1 July 2015
                : 66
                : 15
                : 4835-4849
                Affiliations
                1Division of Biological Science and Technology, Yonsei University , Wonju, 220–710, Republic of Korea
                2Department of Life Science, Hanyang University , Seoul, 133–791, Republic of Korea
                3Department of Bioscience and Biotechnology, Konkuk University , Seoul 143–701, Republic of Korea
                4Department of Molecular Biosciences, University of Texas , Austin, TX 78712, USA
                Author notes
                a These authors contributed equally to this article.
                * To whom correspondence should be addressed. E-mail: soohwan@ 123456yonsei.ac.kr

                Editor: James Murray

                Article
                10.1093/jxb/erv316
                4507784
                26136267
                2c56aba7-afc5-409b-a715-443d00db5768
                © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 15
                Categories
                Research Paper

                Plant science & Botany
                auxin,brassinosteroid,bzr1,columella stem cell,pins,quiescent centre (qc),root apical meristem,root development.

                Comments

                Comment on this article