+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toll-Like Receptor 4 Prompts Human Breast Cancer Cells Invasiveness via Lipopolysaccharide Stimulation and Is Overexpressed in Patients with Lymph Node Metastasis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Toll-like receptor (TLR)4-mediated signaling has been implicated in tumor cell invasion, survival, and metastasis in a variety of cancers. This study investigated the expression and biological role of TLR4 in human breast cancer metastasis. MCF-7 and MDA-MB-231 are human breast cancer cell lines with low and high metastatic potential, respectively. Using lipopolysaccharide (LPS) to stimulate MCF-7 and MDA-MB-231 cells, expression of TLR4 mRNA and protein increased compared with that in control cells. TLR4 activation notably up-regulated expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor(VEGF) mRNA and their secretion in the supernatants of both cell lines. LPS enhanced invasion of MDA-MB-231 cells by transwell assay and MCF-7 cells by wound healing assay. LPS triggered increased expression of TLR4 downstream signaling pathway protein myeloid differentiation factor 88(MyD88) and resulted in interleukin (IL)-6 and IL-10 higher production by human breast cancer cells. Stimulation of TLR4 with LPS promoted tumorigenesis and formed metastatic lesions in liver of nude mice. Moreover, expression of TLR4 and MyD88 as well as invasiveness and migration of the cells could be blocked by TLR4 antagonist. Combined with clinicopathological parameters, TLR4 was overexpressed in human breast cancer tissue and correlated with lymph node metastasis. These findings indicated that TLR4 may participate in the progression and metastasis of human breast cancer and provide a new therapeutic target.

          Related collections

          Most cited references 30

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

           K Livak,  T Schmittgen (2001)
          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogen recognition and innate immunity.

            Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.
              • Record: found
              • Abstract: found
              • Article: not found

              Innate immune recognition.

              The innate immune system is a universal and ancient form of host defense against infection. Innate immune recognition relies on a limited number of germline-encoded receptors. These receptors evolved to recognize conserved products of microbial metabolism produced by microbial pathogens, but not by the host. Recognition of these molecular structures allows the immune system to distinguish infectious nonself from noninfectious self. Toll-like receptors play a major role in pathogen recognition and initiation of inflammatory and immune responses. Stimulation of Toll-like receptors by microbial products leads to the activation of signaling pathways that result in the induction of antimicrobial genes and inflammatory cytokines. In addition, stimulation of Toll-like receptors triggers dendritic cell maturation and results in the induction of costimulatory molecules and increased antigen-presenting capacity. Thus, microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                9 October 2014
                : 9
                : 10
                [1 ]Department of Clinical Laboratory, The Second affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
                [2 ]Department of Oncology, The Second affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
                [3 ]Department of Pathology, The Second affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
                University of Kansas Medical Center, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XZ HY. Performed the experiments: HY BW TW. Analyzed the data: HY TW. Contributed reagents/materials/analysis tools: CH HW LX JY HS. Wrote the paper: HY BW TW.


                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 11
                This work was supported by the Natural Science Foundation of the Jiangsu Province, grant no. BK2012609, and the Foundation of Academic Excellent Member of the Second affiliated Hospital of Soochow University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Motility
                Cell Migration
                Cancer Cell Migration
                Molecular Cell Biology
                Medicine and Health Sciences
                Cancers and Neoplasms
                Breast Tumors
                Breast Cancer
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.



                Comment on this article