9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Emerging targets of disease-modifying therapy for systemic sclerosis

      ,
      Nature Reviews Rheumatology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs

          The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1 −/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1 −/Δ mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases.

            A lack of regulatory T (T(Reg)) cells that express CD4, CD25 and forkhead box P3 (FOXP3) results in severe autoimmunity in both mice and humans. Since the discovery of T(Reg) cells, there has been intense investigation aimed at determining how they protect an organism from autoimmunity and whether defects in their number or function contribute to the development of autoimmunity in model systems. The next phase of investigation - that is, to define the role that defects in T(Reg) cells have in human autoimmunity - is now underway. This Review summarizes our progress so far towards understanding the role of CD4(+)CD25(+)FOXP3(+) T(Reg) cells in human autoimmune diseases and the impact that this knowledge might have on the diagnosis and treatment of these diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGF-β1 Signaling and Tissue Fibrosis

              Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Rheumatology
                Nat Rev Rheumatol
                Springer Nature
                1759-4790
                1759-4804
                February 22 2019
                Article
                10.1038/s41584-019-0184-z
                30796362
                2c77239d-933d-42a0-908c-802079dfcf8a
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article