9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Blockade of IP-10/CXCR3 Promotes Progressive Renal Fibrosis

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aim: Fibrosis is a hallmark of progressive organ disease. The 10-kDa interferon-inducible protein IP-10/CXCL10 is a potent chemoattractant for activated T lymphocytes, natural killer cells, and monocytes. However, the involvement of IP-10 in the pathogenesis of renal diseases viaits receptor, CXCR3, remains unclear. To contribute to the clarification of this issue was the aim of this study. Methods: The impacts of IP-10 on renal fibrosis were investigated in a unilateral ureteral obstruction model in CXCR3-deficient mice and mice treated with anti-IP-10-neutralizing monoclonal antibody. Anti-IP-10 monoclonal antibody (5 mg/kg/day) was injected intravenously once a day until sacrifice on days 1, 4, or 7 after treatment. The effects of IP-10 were confirmed in cultured tubular epithelial cells. Results: IP-10 and CXCR3 were upregulated in progressive renal fibrosis. Blockade of IP-10/CXCR3 promotes renal fibrosis, as evidenced by increases in interstitial fibrosis and hydroxyproline contents, concomitant decrease in hepatocyte growth factor expression, and converse increase in transforming growth factor-β1 in diseased kidneys. IP-10 blockade affected neither macrophage nor T cell infiltration in diseased kidneys. Conclusion: These results suggest that blockade of IP-10 via CXCR3 contributes to renal fibrosis, possibly by upregulation of transforming growth factor-β1, concomitant with downregulation of hepatocyte growth factor.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Blockade of CCR2 ameliorates progressive fibrosis in kidney.

          Fibrosis is a hallmark of progressive organ diseases. Monocyte chemoattractant protein (MCP)-1, also termed as macrophage chemotactic and activating factor (MCAF/CCL2) and its receptor, CCR2 are presumed to contribute to progressive fibrosis. However, the therapeutic efficacy of MCP-1/CCR2 blockade in progressive fibrosis remains to be investigated. We hypothesized that blockade of CCR2 may lead to the improvement of fibrosis. To achieve this goal, we investigated renal interstitial fibrosis induced by a unilateral ureteral obstruction in CCR2 gene-targeted mice and mice treated with propagermanium or RS-504393, CCR2 inhibitors. Cell infiltrations, most of which were F4/80-positive, were reduced in CCR2 knockout mice. In addition, dual staining revealed that CCR2-positive cells were mainly F4/80-positive macrophages. Importantly, CCR2 blockade reduced renal interstitial fibrosis relative to wild-type mice. Concomitantly, renal transcripts and protein of MCP-1, transforming growth factor-beta, and type I collagen were decreased in CCR2-null mice. Further, this CCR2-dependent loop for renal fibrosis was confirmed by treatment with CCR2 antagonists in a unilateral ureteral obstruction model. These findings suggest that the therapeutic strategy of blocking CCR2 may prove beneficial for progressive fibrosis via the decrease in infiltration and activation of macrophages in the diseased kidneys.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hematopoietic Stem Cells Are Uniquely Selective in Their Migratory Response to Chemokines

            Although hematopoietic stem cell (HSC) migration into and out of sites of active hematopoiesis is poorly understood, it is a critical process that underlies modern clinical stem cell transplantation and may be important for normal hematopoietic homeostasis. Given the established roles of chemotactic cytokine (chemokine)-directed migration of other leukocyte subsets, the migration of murine HSC to a large panel of CC and CXC chemokines was investigated. HSC migrated only in response to stromal derived factor-1α, the ligand for the CXC chemokine receptor 4 (CXCR4). CXCR4 expression by HSC was confirmed by reverse transcription polymerase chain reaction analysis. Surprisingly, HSC also expressed mRNA for CCR3 and CCR9, although they failed to migrate to the ligands for these receptors. The sharply restricted chemotactic responsiveness of HSC is unique among leukocytes and may be necessary for the specific homing of circulating HSC to bone marrow, as well as for the maintenance of HSC in hematopoietic microenvironments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration.

              To clarify biological roles of tumor necrosis factor receptor p55 (TNF-Rp55) -mediated signals in wound healing, skin excisions were prepared in BALB/c (WT) and TNF-Rp55-deficient (KO) mice. In WT mice, the wound area was reduced to 50% of the original area 6 days after injury, with angiogenesis and collagen accumulation. Histopathologically, reepithelialization rate was approximately 80% 6 days. Myeloperoxidase activity and macrophage recruitment were the most evident 1 and 6 days after injury, respectively. Gene expression of adhesion molecules, interleukin 1alpha (IL-1alpha), IL-1beta, monocyte chemoattractant protein 1, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-2, transforming growth factor beta1 (TGF-beta1) connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF), Flt-1, and Flk-1 was enhanced at the wound site. In KO mice, an enhancement in angiogenesis, collagen content, and reepithelialization was accelerated with the increased gene expression of TGF-beta1, CTGF, VEGF, Flt-1, and Flk-1 at the wound sites, resulting in accelerated wound healing compared with WT mice. In contrast, leukocyte infiltration, mRNA expression of adhesion molecules, and cytokines were significantly reduced in KO mice. These observations suggest that TNF-Rp55-mediated signals have some role in promoting leukocyte infiltration at the wound site and negatively affect wound healing, probably by reducing angiogenesis and collagen accumulation.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2007
                September 2007
                31 July 2007
                : 107
                : 1
                : e12-e21
                Affiliations
                aDepartment of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, and bDivision of Blood Purification, Kanazawa University, Kanazawa, cDivision of Nephrology, Kanazawa Medical University, Kahoku, dDepartment of Forensic Medicine, Wakayama Medical University, Wakayama, eCMIC Company Ltd., Tokyo, fDepartment of Cell Biology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, and gDepartment of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; hPerlmutter Laboratory, Children’s Hospital and Harvard Medical School, Boston, Mass., USA
                Article
                106505 Nephron Exp Nephrol 2007;107:e12–e21
                10.1159/000106505
                17671396
                2c7b666f-83b6-4d4e-90a1-8800171aff15
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 14 December 2006
                : 18 April 2007
                Page count
                Figures: 6, References: 36, Pages: 1
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Kidney fibrosis,Chemokines,IP-10 protein,CXCR3 receptor
                Cardiovascular Medicine, Nephrology
                Kidney fibrosis, Chemokines, IP-10 protein, CXCR3 receptor

                Comments

                Comment on this article