51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance

      rapid-communication

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Designing cell-compatible hydrogels for biomedical applications.

          Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. They can be engineered to resemble the extracellular environment of the body's tissues in ways that enable their use in medical implants, biosensors, and drug-delivery devices. Cell-compatible hydrogels are designed by using a strategy of coordinated control over physical properties and bioactivity to influence specific interactions with cellular systems, including spatial and temporal patterns of biochemical and biomechanical cues known to modulate cell behavior. Important new discoveries in stem cell research, cancer biology, and cellular morphogenesis have been realized with model hydrogel systems premised on these designs. Basic and clinical applications for hydrogels in cell therapy, tissue engineering, and biomedical research continue to drive design improvements using performance-based materials engineering paradigms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Injectable hydrogels as unique biomedical materials.

            A concentrated fish soup could be gelled in the winter and re-solled upon heating. In contrast, some synthetic copolymers exhibit an inverse sol-gel transition with spontaneous physical gelation upon heating instead of cooling. If the transition in water takes place below the body temperature and the chemicals are biocompatible and biodegradable, such gelling behavior makes the associated physical gels injectable biomaterials with unique applications in drug delivery and tissue engineering etc. Various therapeutic agents or cells can be entrapped in situ and form a depot merely by a syringe injection of their aqueous solutions at target sites with minimal invasiveness and pain. This tutorial review summarizes and comments on this soft matter, especially thermogelling poly(ethylene glycol)-(biodegradable polyester) block copolymers. The main types of injectable hydrogels are also briefly introduced, including both physical gels and chemical gels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering.

              Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAGs). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by the encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications.
                Bookmark

                Author and article information

                Journal
                Nano Lett
                Nano Lett
                nl
                nalefd
                Nano Letters
                American Chemical Society
                1530-6984
                1530-6992
                22 March 2017
                14 June 2017
                : 17
                : 6
                : 3782-3791
                Affiliations
                []DWI − Leibniz-Institute for Interactive Materials , 52074 Aachen, Germany
                []Institute for Technical and Macromolecular Chemistry, RWTH , 52062 Aachen, Germany
                Author notes
                Article
                10.1021/acs.nanolett.7b01123
                5537692
                28326790
                2c7f4664-e2e1-4027-8e02-63c76d67c841
                Copyright © 2017 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 16 March 2017
                Categories
                Letter
                Custom metadata
                nl7b01123
                nl-2017-01123g

                Nanotechnology
                nerve growth,tissue regeneration,injectable hydrogel,anisotropy,magnetic alignment,microgels,magnetic nanoparticles

                Comments

                Comment on this article