17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of the elevation of the left ventricular diastolic pressure on the values of the first temporal derivative of the ventricular pressure (dP/dt)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PURPOSE: To assess the effects of the elevation of the left ventricular end-diastolic pressure (LVEDP) on the value of the 1st temporal derivative of the ventricular pressure (dP/dt). METHODS: Nineteen anesthetized dogs were studied. The dogs were mechanically ventilated and underwent thoracotomy with parasympathetic nervous system block. The LVEDP was controlled with the use of a perfusion circuit connected to the left atrium and adjusted to the height of a reservoir. The elevation of the LVEDP was achieved by a sudden increase in the height of a reservoir filled with blood. Continuous recordings of the electrocardiogram, the aortic and ventricular pressures and the dP/dt were performed. RESULTS: Elevation of the LVEDP did not result in any variation of the heart rate (167±16.0bpm, before the procedure; 167±15.5bpm, after the procedure). All the other variables assessed, including systolic blood pressure (128±18.3mmHg and 150±21.5mmHg), diastolic blood pressure (98±16.9mmHg and 115±19.8mmHg), LVEDP (5.5±2.49 and 9.3±3.60mmHg), and dP/dt (4,855 ± 1,082 mmHg/s and 5,149±1,242mmHg/s) showed significant increases following the expansion of the ventricular cavity. Although the elevation of the dP/dt was statistically significant, 6 dogs curiously showed a decrease in the values of dP/dt. CONCLUSION: Sudden elevation of the LVEDP resulted in increased values of dP/dt; however, in some dogs, this response was not uniform.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          The cellular basis of the length-tension relation in cardiac muscle.

          The relation between muscle length or sarcomere length and developed tension for lengths up to the optimal for contraction (Lmax) is much steeper in cardiac muscle than in skeletal muscle. The steepness of the cardiac length--tension relation arises because the degree of activation of the cardiac myofibrils by calcium increases as muscle length is increased. Two processes contribute to this length-dependence of activation: (i) the calcium sensitivity of the myofibrils increases with muscle length and (ii) the amount of calcium supplied to the myofibrils during systole increases with muscle length. Of these two, the change in calcium sensitivity is the most clearly defined and is responsible for a large part of the rapid change in developed tension when muscle length is altered. It is likely that this change in calcium sensitivity is due to a change in the affinity of troponin for calcium but the underlying mechanism has not been identified. There is good evidence that changes in the calcium supply to the myofibrils can account for the slow changes in tension that follow an alteration in length; there may also be rapid changes in calcium supply but this is less clearly established at present.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations.

            To investigate the extent to which the properties of the cardiac myofibrils contribute to the length-force relation of cardiac muscle, we determined the sarcomere length-force relations for rat ventricular trabeculae both before and after the muscles were skinned with the detergent Triton X-100. Sarcomere length was measured continuously by laser diffraction. In the unskinned trabeculae stimulated at 0.2 Hz, the relation between active force and sarcomere length at an extracellular calcium concentration of 1.5 mM was curved away from the sarcomere length axis, with zero force at sarcomere length of 1.5-1.6 micron. At 0.3 mM calcium, the sarcomere length-force relation was curved toward the sarcomere length axis. Chemical skinning of the muscle with 1% Triton X-100 in a "relaxing solution" caused an increase in intensity and decrease in dispersion of the first order diffraction beam, indicating an increased uniformity of sarcomere length in the relaxed muscle. During calcium-regulated contractures in the skinned muscles, the central sarcomeres shortened by up to 20%. As the calcium concentration was increased over the range 1-50 microM, the relation between steady calcium-regulated force and sarcomere length shifted to higher force values and changed in shape in a manner similar to that observed for changes in extracellular calcium concentration before skinning. The sarcomere length-force relations for the intact muscles at an extracellular calcium concentration of 1.5 mM were similar to the curves at calcium concentration of 8.9 microM in the skinned preparations, whereas the curves at an extracellular calcium concentration of 0.3 mM in intact muscles fell between the relations at calcium concentrations of 2.7 and 4.3 microM in the skinned preparations. A factor contributing to the shape of the curves in the skinned muscle at submaximal calcium concentrations was that the calcium sensitivity of force production increased with increasing sarcomere length. The calcium concentration required for 50% activation decreased from 7.71 +/- 0.52 microM to 3.77 +/- 0.33 microM for an increase of sarcomere length from 1.75 to 2.15 micron. The slope of the force-calcium concentration relation increased from 2.82 to 4.54 with sarcomere length between 1.75 and 2.15 micron. This change in calcium sensitivity was seen over the entire range of sarcomere lengths corresponding to the ascending limb of the cardiac length-force relation. It is concluded that the properties of the cardiac contractile machinery (including the length-dependence of calcium sensitivity) can account for much of the shape of the ascending limb in intact cardiac muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle.

              1. The calcium-sensitive photoprotein aequorin was micro-injected into cells of rat and cat ventricular muscles. The resulting light emission is a function of intracellular free calcium concentration ([Ca2+]i). The transient increases in [Ca2+]i that accompany contraction were monitored. 2. After an increase in muscle length, the developed tension increased immediately and then showed a slow increase over a period of minutes. The peak [Ca2+]i in each contraction was initially unchanged after an increase in muscle length but then showed a slow increase with a time course similar to that of the slow tension change. 3. As a consequence of these slow changes, the shape of the tension-length relation depends on the procedure used to determine it and this change in shape can be attributed to changes in activation. 4. Immediately after an increase in muscle length the calcium transient was abbreviated. 5. When a quick release was performed during a contraction, a short-lived increase in the [Ca2+]i was observed following the release. 6. The two previous observations can both be explained if the binding constant of troponin for calcium is a function of developed tension.
                Bookmark

                Author and article information

                Journal
                abc
                Arquivos Brasileiros de Cardiologia
                Arq. Bras. Cardiol.
                Sociedade Brasileira de Cardiologia - SBC (São Paulo, SP, Brazil )
                0066-782X
                1678-4170
                July 1999
                : 73
                : 1
                : 42-46
                Affiliations
                [01] orgnameUniversidade Estadual de São Paulo orgdiv1Faculdade de Medicina de Botucatu
                Article
                S0066-782X1999000700004 S0066-782X(99)07300104
                10.1590/S0066-782X1999000700004
                2c8a4d80-11de-480a-8715-7019d1bc622b

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 53, Pages: 5
                Product

                SciELO Brazil

                Categories
                Original Articles

                Frank-Starling mechanism,dP/dt,ventricular function
                Frank-Starling mechanism, dP/dt, ventricular function

                Comments

                Comment on this article