190
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fano resonances in nanoscale structures

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays nanotechnology allows to scale-down various important devices (sensors, chips, fibres, etc), and, thus, opens up new horizon for their applications. Nevertheless, the efficiency most of them is still based on the fundamental physical phenomena, such as resonances. Thus, the understanding of the resonance phenomena will be beneficial. One of the well-known examples is the resonant enhancement of the transmission known as Breit-Wigner resonances, which can be described by a Lorentzian function. But, in many physical systems the scattering of waves involves propagation along different paths, and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different branches of physics. The purpose of this Review is to demonstrate that this kind of resonant scattering is related to the Fano resonances, known from atomic physics. One of the main features of the Fano resonances is the asymmetric profile. The asymmetry comes from the close coexistence of resonant transmission and resonant reflection. Fano successfully explained such a phenomenon in his seminal paper in 1961 in terms of interaction of a discrete (localized) state with a continuum of propagation modes. It allows to describe both resonant enhancement and resonant suppression in a unified manner. All of these properties can be demonstrated in the frame of a very simple model, which will be used throughout the Review to show that resonant reflections observed in different complex systems are indeed closely related to the Fano resonances.

          Related collections

          Most cited references248

          • Record: found
          • Abstract: found
          • Article: not found

          Surface plasmon subwavelength optics.

          Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Many-Body Physics with Ultracold Gases

            This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Spectral Distribution of Atomic Oscillator Strengths

                Bookmark

                Author and article information

                Journal
                17 February 2009
                2009-06-27
                Article
                10.1103/RevModPhys.82.2257
                0902.3014
                2c92f7d3-2cdd-45c7-9c49-59cc195a939f

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Rev. Mod. Phys. 82, 2257-2298 (2010)
                This review paper was submitted to Review of Modern Physics. But all comments are still welcome!
                cond-mat.mtrl-sci cond-mat.mes-hall cond-mat.str-el cond-mat.supr-con math-ph math.MP nlin.SI physics.atom-ph physics.optics

                Comments

                Comment on this article