5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fuchs' Endothelial Corneal Dystrophy and RNA Foci in Patients With Myotonic Dystrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The most common cause of Fuchs' endothelial corneal dystrophy (FECD) is an intronic CTG repeat expansion in TCF4. Expanded CUG repeat RNA colocalize with splicing factor, muscleblind-like 1 (MBNL1), in nuclear foci in endothelium as a molecular hallmark. Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a CTG repeat expansion in the 3′-untranslated region (UTR) of DMPK. In this study, we examine for RNA-MBNL1 foci in endothelial cells of FECD subjects with DM1, test the hypothesis that DM1 patients are at risk for FECD, and determine prevalence of TCF4 and DMPK expansions in a FECD cohort.

          Methods

          Using FISH, we examined for nuclear RNA-MBNL1 foci in endothelial cells from FECD subjects with DM1. We examined 13 consecutive unrelated DM1 patients for FECD using slit-lamp and specular microscopy. We genotyped TCF4 and DMPK repeat polymorphisms in a FECD cohort of 317 probands using short-tandem repeat and triplet repeat-primed PCR assays.

          Results

          We detected abundant nuclear RNA foci colocalizing with MBNL1 in endothelial cells of FECD subjects with DM1. Six of thirteen DM1 patients (46%) had slit-lamp and specular microscopic findings of FECD, compared to 4% disease prevalence ( P = 5.5 × 10 -6 ). As expected, 222 out of 317 (70%) FECD probands harbored TCF4 expansion, while one subject harbored DMPK expansion without prior diagnosis of DM1.

          Conclusions

          Our work suggests that DM1 patients are at risk for FECD. DMPK mutations contribute to the genetic burden of FECD but are uncommon. We establish a connection between two repeat expansion disorders converging upon RNA-MBNL1 foci and FECD.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member.

          Using positional cloning strategies, we have identified a CTG triplet repeat that undergoes expansion in myotonic dystrophy patients. This sequence is highly variable in the normal population. PCR analysis of the interval containing this repeat indicates that unaffected individuals have been 5 and 27 copies. Myotonic dystrophy patients who are minimally affected have at least 50 repeats, while more severely affected patients have expansion of the repeat containing segment up to several kilobase pairs. The CTG repeat is transcribed and is located in the 3' untranslated region of an mRNA that is expressed in tissues affected by myotonic dystrophy. This mRNA encodes a polypeptide that is a member of the protein kinase family.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy.

            Fuchs endothelial corneal dystrophy (FECD) is a progressive, blinding disease characterized by corneal endothelial (CE) cell apoptosis. Corneal transplantation is the only measure currently available to restore vision in these patients. Despite the identification of some genetic factors, the pathophysiology of FECD remains unclear. In this study, we observed a decrease in the antioxidant response element-driven antioxidants in FECD corneal endothelium. We further demonstrated that nuclear factor erythroid 2-related factor 2, a transcription factor known to bind the antioxidant response element and activate antioxidant defense, is down-regulated in FECD endothelium. Importantly, we detected significantly higher levels of oxidative DNA damage and apoptosis in FECD endothelium compared with normal controls and pseudophakic bullous keratopathy (iatrogenic CE cell loss) specimens. A marker of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, colocalized to mitochondria, indicating that the mitochondrial genome is the specific target of oxidative stress in FECD. Oxidative DNA damage was not detected in pseudophakic bullous keratopathy corneas, whereas it colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in FECD samples. Ex vivo, oxidative stress caused characteristic morphological changes and apoptosis of CE, suggestive of findings that characterize FECD in vivo. Together, these data suggest that suboptimal nuclear factor erythroid 2-related factor 2-regulated defenses may account for oxidant-antioxidant imbalance in FECD, which in turn leads to oxidative DNA damage and apoptosis. This study provides evidence that oxidative stress plays a key role in FECD pathogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts.

              Expansion of a CTG trinucleotide repeat in the 3' untranslated region (UTR) of DMPK, the gene encoding myotonic dystrophy protein kinase, induces the dominantly inherited neuromuscular disorder myotonic dystrophy (DM). Transcripts containing the expanded trinucleotide are abundant in differentiated cultured myoblasts, and they are spliced and polyadenylylated normally. However, mutant transcripts never reach the cytoplasm in these nonmitotic cells; instead, they form stable clusters that are tightly linked to the nuclear matrix, which can prevent effective biochemical purification of these transcripts. In DM patients, reduced DMPK protein levels, consequent to nuclear retention of mutant transcripts, are probably a cause of disease development. Formation of nuclear foci is a novel mechanism for preventing transcript export and effecting a loss of gene function.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                iovs
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                September 2017
                : 58
                : 11
                : 4579-4585
                Affiliations
                [1 ]Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
                [2 ]McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States
                [3 ]Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
                [4 ]Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, United States
                [5 ]Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States
                Author notes
                Correspondence: V. Vinod Mootha, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Vinod.Mootha@ 123456UTSouthwestern.edu .
                Article
                iovs-58-11-02 IOVS-17-22350R1
                10.1167/iovs.17-22350
                5590687
                28886202
                2cafc03f-700e-43c8-8470-013a9b46cee9
                Copyright 2017 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 5 June 2017
                : 15 August 2017
                Categories
                Cornea

                fuchs' endothelial corneal dystrophy,myotonic dystrophy,triplet repeat expansion,dmpk,nuclear rna foci

                Comments

                Comment on this article